IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v137y2018icp168-181.html
   My bibliography  Save this article

Developmental trajectories of new energy vehicle research in economic management: Main path analysis

Author

Listed:
  • Yan, Jianghui
  • Tseng, Fang-Mei
  • Lu, Louis Y.Y.

Abstract

The present share of new energy vehicles (NEVs) in the global automobile market is less than 1%. To understand why, we reviewed the body of literature on this topic, to identify the developmental trends of NEVs. Unlike previous reviews, which have mainly focused on a singular topic (e.g., charging, policies, etc.), we used main path analysis (MPA) to analyze a citation network of the literature on NEVs in the field of economic management. Our goals were to identify developmental trajectories and explore the major research topics of NEVs. A search of the Web of Science database identified 801 NEV-themed articles. Analyses of these studies indicate the following. First, endurance mileage was a key factor restricting the penetration of the new energy market by NEVs before 2013, and the charging problem gradually became the key factor after 2013. Second, the technological development of NEVs is locked to some extent onto the technology of the internal-combustion engine. Third, more innovative vehicles are the future of NEVs. This paper presents some feasible solutions to the charging problem and call for more attention to be placed on the influence of the intelligent attributes of NEVs which may drive the future developmental trend.

Suggested Citation

  • Yan, Jianghui & Tseng, Fang-Mei & Lu, Louis Y.Y., 2018. "Developmental trajectories of new energy vehicle research in economic management: Main path analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 168-181.
  • Handle: RePEc:eee:tefoso:v:137:y:2018:i:c:p:168-181
    DOI: 10.1016/j.techfore.2018.07.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162517312064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.07.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fangzhu Zhang & Philip Cooke, 2010. "Hydrogen and Fuel Cell Development in China: A Review," European Planning Studies, Taylor & Francis Journals, vol. 18(7), pages 1153-1168, July.
    2. Matthias D. Galus & Marina González Vayá & Thilo Krause & Göran Andersson, 2013. "The role of electric vehicles in smart grids," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(4), pages 384-400, July.
    3. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    4. Fetene, Gebeyehu M. & Hirte, Georg & Kaplan, Sigal & Prato, Carlo G. & Tscharaktschiew, Stefan, 2016. "The economics of workplace charging," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 93-118.
    5. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    6. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    7. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    8. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    9. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    10. Calfee, John E., 1985. "Estimating the demand for electric automobiles using fully disaggregated probabilistic choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 287-301, August.
    11. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    12. Franke, Thomas & Krems, Josef F., 2013. "Interacting with limited mobility resources: Psychological range levels in electric vehicle use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 109-122.
    13. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    14. Ramteen Sioshansi, 2012. "OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions," Operations Research, INFORMS, vol. 60(3), pages 506-516, June.
    15. Faria, Marta V. & Baptista, Patrícia C. & Farias, Tiago L., 2014. "Electric vehicle parking in European and American context: Economic, energy and environmental analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 110-121.
    16. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    17. Martinelli, Arianna, 2012. "An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry," Research Policy, Elsevier, vol. 41(2), pages 414-429.
    18. Lieven, Theo, 2015. "Policy measures to promote electric mobility – A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 78-93.
    19. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "Data envelopment analysis 1978–2010: A citation-based literature survey," Omega, Elsevier, vol. 41(1), pages 3-15.
    20. Zubaryeva, Alyona & Thiel, Christian & Barbone, Enrico & Mercier, Arnaud, 2012. "Assessing factors for the identification of potential lead markets for electrified vehicles in Europe: expert opinion elicitation," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1622-1637.
    21. Felipe, Ángel & Ortuño, M. Teresa & Righini, Giovanni & Tirado, Gregorio, 2014. "A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 111-128.
    22. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    23. Mau, Paulus & Eyzaguirre, Jimena & Jaccard, Mark & Collins-Dodd, Colleen & Tiedemann, Kenneth, 2008. "The 'neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies," Ecological Economics, Elsevier, vol. 68(1-2), pages 504-516, December.
    24. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    25. Liu, John S. & Lu, Louis Y.Y. & Ho, Mei Hsiu-Ching, 2012. "Total influence and mainstream measures for scientific researchers," Journal of Informetrics, Elsevier, vol. 6(4), pages 496-504.
    26. Junquera, Beatriz & Moreno, Blanca & Álvarez, Roberto, 2016. "Analyzing consumer attitudes towards electric vehicle purchasing intentions in Spain: Technological limitations and vehicle confidence," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 6-14.
    27. Zubaryeva, Alyona & Thiel, Christian & Zaccarelli, Nicola & Barbone, Enrico & Mercier, Arnaud, 2012. "Spatial multi-criteria assessment of potential lead markets for electrified vehicles in Europe," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(9), pages 1477-1489.
    28. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    29. Arslan, Okan & Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Minimum cost path problem for Plug-in Hybrid Electric Vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 123-141.
    30. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    31. Robin Segal, 1995. "Forecasting the Market for Electric Vehicles in California Using Conjoint Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 89-112.
    32. Kirsch, David A. & Mom, Gijs P. A., 2002. "Visions of Transportation: The EVC and the Transition from Service- to Product-Based Mobility," Business History Review, Cambridge University Press, vol. 76(1), pages 75-110, April.
    33. Wei Gu & Haojun Yu & Wei Liu & Junpeng Zhu & Xiaohui Xu, 2013. "Demand Response and Economic Dispatch of Power Systems Considering Large-Scale Plug-in Hybrid Electric Vehicles/Electric Vehicles (PHEVs/EVs): A Review," Energies, MDPI, vol. 6(9), pages 1-24, August.
    34. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    35. He, Fang & Wu, Di & Yin, Yafeng & Guan, Yongpei, 2013. "Optimal deployment of public charging stations for plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 87-101.
    36. Arslan, Okan & Karaşan, Oya Ekin, 2016. "A Benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 670-695.
    37. Gebauer, Fabian & Vilimek, Roman & Keinath, Andreas & Carbon, Claus-Christian, 2016. "Changing attitudes towards e-mobility by actively elaborating fast-charging technology," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 31-36.
    38. Mohamed, Moataz & Higgins, Chris & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Identifying and characterizing potential electric vehicle adopters in Canada: A two-stage modelling approach," Transport Policy, Elsevier, vol. 52(C), pages 100-112.
    39. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    40. Peng, Minghong & Liu, Lian & Jiang, Chuanwen, 2012. "A review on the economic dispatch and risk management of the large-scale plug-in electric vehicles (PHEVs)-penetrated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1508-1515.
    41. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    42. Bunce, Louise & Harris, Margaret & Burgess, Mark, 2014. "Charge up then charge out? Drivers’ perceptions and experiences of electric vehicles in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 278-287.
    43. Skippon, Stephen M. & Kinnear, Neale & Lloyd, Louise & Stannard, Jenny, 2016. "How experience of use influences mass-market drivers’ willingness to consider a battery electric vehicle: A randomised controlled trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 26-42.
    44. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    45. Yetano Roche, María & Mourato, Susana & Fischedick, Manfred & Pietzner, Katja & Viebahn, Peter, 2010. "Public attitudes towards and demand for hydrogen and fuel cell vehicles: A review of the evidence and methodological implications," Energy Policy, Elsevier, vol. 38(10), pages 5301-5310, October.
    46. Wang, Ying-Wei & Lin, Chuah-Chih, 2013. "Locating multiple types of recharging stations for battery-powered electric vehicle transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 76-87.
    47. Franke, Thomas & Krems, Josef F., 2013. "What drives range preferences in electric vehicle users?," Transport Policy, Elsevier, vol. 30(C), pages 56-62.
    48. Axsen, Jonn & Bailey, Joseph & Castro, Marisol Andrea, 2015. "Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers," Energy Economics, Elsevier, vol. 50(C), pages 190-201.
    49. DeLuchi, Mark A. & Wang, Quanlu & Sperling, Daniel, 1989. "Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements," University of California Transportation Center, Working Papers qt3438b4bx, University of California Transportation Center.
    50. Pasaoglu, Guzay & Zubaryeva, Alyona & Fiorello, Davide & Thiel, Christian, 2014. "Analysis of European mobility surveys and their potential to support studies on the impact of electric vehicles on energy and infrastructure needs in Europe," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 41-50.
    51. Schneider, M. & Stenger, A. & Hof, J., 2015. "An Adaptive VNS Algorithm for Vehicle Routing Problems with Intermediate Stops," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63500, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    52. Pasaoglu, G. & Fiorello, D. & Martino, A. & Zani, L. & Zubaryeva, A. & Thiel, C., 2014. "Travel patterns and the potential use of electric cars – Results from a direct survey in six European countries," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 51-59.
    53. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.
    54. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    55. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    56. David Calef & Robert Goble, 2007. "The allure of technology: How France and California promoted electric and hybrid vehicles to reduce urban air pollution," Policy Sciences, Springer;Society of Policy Sciences, vol. 40(1), pages 1-34, March.
    57. Irani, Alexandra & Chalak, Ali, 2015. "Harnessing motorists’ potential demand for hybrid-electric vehicles in Lebanon: Policy options, CO2 emissions reduction and welfare gains," Transport Policy, Elsevier, vol. 42(C), pages 144-155.
    58. Ziegler, Andreas, 2012. "Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1372-1385.
    59. Daziano, Ricardo A., 2013. "Conditional-logit Bayes estimators for consumer valuation of electric vehicle driving range," Resource and Energy Economics, Elsevier, vol. 35(3), pages 429-450.
    60. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    61. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    62. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    63. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    64. DeLuchi, Mark A. & Wang, Quanlu & Sperling, Daniel, 1989. "Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements," University of California Transportation Center, Working Papers qt4w0463pt, University of California Transportation Center.
    65. Chuang, Thomas C. & Liu, John S. & Lu, Louis Y.Y. & Lee, Yachi, 2014. "The main paths of medical tourism: From transplantation to beautification," Tourism Management, Elsevier, vol. 45(C), pages 49-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Ichiro Watanabe & Soichiro Takagi, 2021. "Technological Trajectory Analysis of Patent Citation Networks: Examining the Technological Evolution of Computer Graphic Processing Systems," The Review of Socionetwork Strategies, Springer, vol. 15(1), pages 1-25, June.
    3. Zheng, Xuemei & Menezes, Flavio & Zheng, Xiaofeng & Wu, Chengkuan, 2022. "An empirical assessment of the impact of subsidies on EV adoption in China: A difference-in-differences approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 121-136.
    4. Yu, Dejian & Pan, Tianxing, 2021. "Tracing the main path of interdisciplinary research considering citation preference: A case from blockchain domain," Journal of Informetrics, Elsevier, vol. 15(2).
    5. Kuan, Chung-Huei & Lin, Jia-Tian & Chen, Dar-Zen, 2021. "Characterizing Patent Assignees by Their Structural Positions Relative to a Field’s Evolutionary Trajectory," Journal of Informetrics, Elsevier, vol. 15(4).
    6. Liao, Shu-Chun & Chou, Tzu-Chuan & Huang, Chen-Hao, 2022. "Revisiting the development trajectory of the digital divide: A main path analysis approach," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    7. Ba, Zhichao & Ma, Yaxue & Cai, Jinyao & Li, Gang, 2023. "A citation-based research framework for exploring policy diffusion: Evidence from China's new energy policies," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    8. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    9. Peng Yu & Jian Zhang & Defang Yang & Xin Lin & Tianying Xu, 2019. "The Evolution of China’s New Energy Vehicle Industry from the Perspective of a Technology–Market–Policy Framework," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    10. Song-Chia Hsu & Kai-Ying Chen & Chih-Ping Lin & Wei-Hao Su, 2022. "Knowledge Development Trajectories of Crime Prevention Domain: An Academic Study Based on Citation and Main Path Analysis," IJERPH, MDPI, vol. 19(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    2. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    3. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    4. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    5. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    6. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    7. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    8. Bongiovanni, Claudia & Kaspi, Mor & Geroliminis, Nikolas, 2019. "The electric autonomous dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 436-456.
    9. Schiffer, Maximilian & Walther, Grit, 2017. "The electric location routing problem with time windows and partial recharging," European Journal of Operational Research, Elsevier, vol. 260(3), pages 995-1013.
    10. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    11. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    12. Li, Lu & Lo, Hong K. & Huang, Wei & Xiao, Feng, 2021. "Mixed bus fleet location-routing-scheduling under range uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 155-179.
    13. Schiffer, Maximilian & Schneider, Michael & Laporte, Gilbert, 2018. "Designing sustainable mid-haul logistics networks with intra-route multi-resource facilities," European Journal of Operational Research, Elsevier, vol. 265(2), pages 517-532.
    14. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    15. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    16. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    17. Arslan, Okan & Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Minimum cost path problem for Plug-in Hybrid Electric Vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 123-141.
    18. Alvo, Matías & Angulo, Gustavo & Klapp, Mathias A., 2021. "An exact solution approach for an electric bus dispatch problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    19. Schiffer, Maximilian & Walther, Grit, 2018. "Strategic planning of electric logistics fleet networks: A robust location-routing approach," Omega, Elsevier, vol. 80(C), pages 31-42.
    20. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:137:y:2018:i:c:p:168-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.