IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v35y2013i3p429-450.html
   My bibliography  Save this article

Conditional-logit Bayes estimators for consumer valuation of electric vehicle driving range

Author

Listed:
  • Daziano, Ricardo A.

Abstract

Range anxiety – consumers’ concerns about limited driving range – is generally considered an important barrier to the adoption of electric vehicles. If consumers cannot overcome these fears it is unlikely that they will consider purchasing an electric car. Hence, a successful introduction of low emission vehicles in the market requires a full understanding of consumer valuation of driving range. By analyzing experimental data on vehicle purchase decisions in California, I derive and study the statistical behavior of Bayes estimates that summarize consumer concerns toward limited driving range. These estimates are superior to marginal utilities as parameters of interest in a discrete demand model of vehicle choice. One of the empirical results is the posterior distribution of the willingness to pay for electric vehicles with improved batteries offering better driving range. Credible intervals for this willingness to pay, as well as both parametric and nonparametric heterogeneity distributions, are also analyzed.

Suggested Citation

  • Daziano, Ricardo A., 2013. "Conditional-logit Bayes estimators for consumer valuation of electric vehicle driving range," Resource and Energy Economics, Elsevier, vol. 35(3), pages 429-450.
  • Handle: RePEc:eee:resene:v:35:y:2013:i:3:p:429-450
    DOI: 10.1016/j.reseneeco.2013.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765513000298
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. Sándor, Zsolt & Train, Kenneth, 2004. "Quasi-random simulation of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
    3. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    4. Small, Kenneth A & Rosen, Harvey S, 1981. "Applied Welfare Economics with Discrete Choice Models," Econometrica, Econometric Society, vol. 49(1), pages 105-130, January.
    5. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    6. de Jong, Gerard & Daly, Andrew & Pieters, Marits & van der Hoorn, Toon, 2007. "The logsum as an evaluation measure: Review of the literature and new results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 874-889, November.
    7. Golob, Thomas F. & Torous, Jane & Bradley, Mark & Brownstone, David & Crane, Soheila Soltani & Bunch, David S., 1997. "Commercial fleet demand for alternative-fuel vehicles in California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 219-233, May.
    8. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    9. Calfee, John E., 1985. "Estimating the demand for electric automobiles using fully disaggregated probabilistic choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 287-301, August.
    10. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    11. Garrett Sonnier & Andrew Ainslie & Thomas Otter, 2007. "Heterogeneity distributions of willingness-to-pay in choice models," Quantitative Marketing and Economics (QME), Springer, vol. 5(3), pages 313-331, September.
    12. Koop, Gary & Poirier, Dale J., 1993. "Bayesian analysis of logit models using natural conjugate priors," Journal of Econometrics, Elsevier, vol. 56(3), pages 323-340, April.
    13. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    14. Steven Scott, 2011. "Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models," Statistical Papers, Springer, vol. 52(1), pages 87-109, February.
    15. Stephane Hess & Mark Fowler & Thomas Adler & Aniss Bahreinian, 2012. "A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study," Transportation, Springer, vol. 39(3), pages 593-625, May.
    16. Bolduc, Denis & Khalaf, Lynda & Yélou, Clément, 2010. "Identification robust confidence set methods for inference on parameter ratios with application to discrete choice models," Journal of Econometrics, Elsevier, vol. 157(2), pages 317-327, August.
    17. P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344, April.
    18. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2008. "A Bayesian mixed logit-probit model for multinomial choice," Journal of Econometrics, Elsevier, vol. 147(2), pages 232-246, December.
    19. Chris Kavalec, 1999. "Vehicle Choice in an Aging Population: Some Insights from a Stated Preference Survey for California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 123-138.
    20. Siddhartha Chib & Edward Greenberg & Yuxin Chen, 1998. "MCMC Methods for Fitting and Comparing Multinomial Response Models," Econometrics 9802001, University Library of Munich, Germany, revised 06 May 1998.
    21. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    22. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    23. Daziano, Ricardo A. & Chiew, Esther, 2012. "Electric vehicles rising from the dead: Data needs for forecasting consumer response toward sustainable energy sources in personal transportation," Energy Policy, Elsevier, vol. 51(C), pages 876-894.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bayesian discrete choice; Battery electric vehicles; Range anxiety; Heterogeneity distributions;

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:35:y:2013:i:3:p:429-450. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.