IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v40y2006i2p147-163.html
   My bibliography  Save this article

On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice

Author

Listed:
  • Hess, Stephane
  • Train, Kenneth E.
  • Polak, John W.

Abstract

Quasi-random number sequences have been used extensively for many years in the simulation of integrals that do not have a closed-form expression, such as Mixed Logit and Multinomial Probit choice probabilities. Halton sequences are one example of such quasi-random number sequences, and various types of Halton sequences, including standard, scrambled, and shuffled versions, have been proposed and tested in the context of travel demand modeling. In this paper, we propose an alternative to Halton sequences, based on an adapted version of Latin Hypercube Sampling. These alternative sequences, like scrambled and shuffled Halton sequences, avoid the undesirable correlation patterns that arise in standard Halton sequences. However, they are easier to create than scrambled or shuffled Halton sequences. They also provide more uniform coverage in each dimension than any of the Halton sequences. A detailed analysis, using a 16-dimensional Mixed Logit model for choice between alternative-fuelled vehicles in California, was conducted to compare the performance of the different types of draws. The analysis shows that, in this application, the Modified Latin Hypercube Sampling (MLHS) outperforms each type of Halton sequence. This greater accuracy combined with the greater simplicity make the MLHS method an appealing approach for simulation of travel demand models and simulation-based models in general.

Suggested Citation

  • Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
  • Handle: RePEc:eee:transb:v:40:y:2006:i:2:p:147-163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(05)00050-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhat, Chandra R., 2000. "A multi-level cross-classified model for discrete response variables," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 567-582, September.
    2. Sándor, Zsolt & Train, Kenneth, 2004. "Quasi-random simulation of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
    3. Tuffin Bruno, 1996. "On the use of low discrepancy sequences in Monte Carlo methods," Monte Carlo Methods and Applications, De Gruyter, vol. 2(4), pages 295-320, December.
    4. Lee, Lung-Fei, 1995. "Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 437-483, June.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    6. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    7. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    8. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    2. Ladenburg, Jacob & Olsen, Søren Bøye, 2014. "Augmenting short Cheap Talk scripts with a repeated Opt-Out Reminder in Choice Experiment surveys," Resource and Energy Economics, Elsevier, vol. 37(C), pages 39-63.
    3. Abildtrup, Jens & Garcia, Serge & Olsen, Søren Bøye & Stenger, Anne, 2013. "Spatial preference heterogeneity in forest recreation," Ecological Economics, Elsevier, vol. 92(C), pages 67-77.
    4. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    5. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    6. Sándor, Zsolt & Train, Kenneth, 2004. "Quasi-random simulation of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
    7. Bliemer, Michiel C.J. & Rose, John M., 2013. "Confidence intervals of willingness-to-pay for random coefficient logit models," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 199-214.
    8. Crabbe, Marjolein & Akinc, Deniz & Vandebroek, Martina, 2014. "Fast algorithms to generate individualized designs for the mixed logit choice model," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 1-15.
    9. Hess, Stephane & Rose, John M., 2009. "Allowing for intra-respondent variations in coefficients estimated on repeated choice data," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 708-719, July.
    10. Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
    11. Hole, Arne Risa, 2008. "Modelling heterogeneity in patients' preferences for the attributes of a general practitioner appointment," Journal of Health Economics, Elsevier, vol. 27(4), pages 1078-1094, July.
    12. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    13. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    14. Martínez-Pardo, Ana & Orro, Alfonso & Garcia-Alonso, Lorena, 2020. "Analysis of port choice: A methodological proposal adjusted with public data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 178-193.
    15. Basu, Debasis & Hunt, John Douglas, 2012. "Valuing of attributes influencing the attractiveness of suburban train service in Mumbai city: A stated preference approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(9), pages 1465-1476.
    16. Falco, Paolo & Maloney, William F. & Rijkers, Bob & Sarrias, Mauricio, 2015. "Heterogeneity in subjective wellbeing: An application to occupational allocation in Africa," Journal of Economic Behavior & Organization, Elsevier, vol. 111(C), pages 137-153.
    17. Ching-Fu Chen & Wen-Chieh Cheng, 2016. "Sustainability SI: Exploring Heterogeneity in Cycle Tourists’ Preferences for an Integrated Bike-Rail Transport Service," Networks and Spatial Economics, Springer, vol. 16(1), pages 83-97, March.
    18. Czajkowski, Mikołaj & Bartczak, Anna & Giergiczny, Marek & Navrud, Stale & Żylicz, Tomasz, 2014. "Providing preference-based support for forest ecosystem service management," Forest Policy and Economics, Elsevier, vol. 39(C), pages 1-12.
    19. Stephane Hess & John W. Polak, 2004. "An analysis of parking behaviour using discrete choice models calibrated on SP datasets," ERSA conference papers ersa04p60, European Regional Science Association.
    20. Giergiczny, Marek & Czajkowski, Mikołaj & Żylicz, Tomasz & Angelstam, Per, 2015. "Choice experiment assessment of public preferences for forest structural attributes," Ecological Economics, Elsevier, vol. 119(C), pages 8-23.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:40:y:2006:i:2:p:147-163. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.