IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Fast algorithms to generate individualized designs for the mixed logit choice model

  • Crabbe, Marjolein
  • Akinc, Deniz
  • Vandebroek, Martina
Registered author(s):

    The mixed logit choice model has become the common standard to analyze transport behavior. Moreover, more and more transport studies start to make use of stated preference data to obtain precise knowledge on travelers’ preferences. Accounting for the individual-specific coefficients in the mixed logit choice model, this research advocates an individualized design approach to generate these stated choice experiments. Individualized designs are sequentially generated for each person separately, using the answers from previous choice sets to select the next best set in a survey. In this way they are adapted to the specific preferences of an individual and therefore more efficient than an aggregate design. In order for individual sequential designs to be practicable, the speed of designing an additional choice set in an experiment is obviously a key issue. This paper introduces three design criteria used in optimal test design, based on Kullback–Leibler information, and compares them with the well known D-efficiency criterion to obtain individually adapted choice designs for the mixed logit choice model. Being equally efficient to D-efficiency and at the same time much faster, the Kullback–Leibler criteria are well suited for the design of individualized choice experiments.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513002178
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

    Volume (Year): 60 (2014)
    Issue (Month): C ()
    Pages: 1-15

    as
    in new window

    Handle: RePEc:eee:transb:v:60:y:2014:i:c:p:1-15
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=548&ref=548_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Ying Cheng, 2009. "When Cognitive Diagnosis Meets Computerized Adaptive Testing: CD-CAT," Psychometrika, Springer, vol. 74(4), pages 619-632, December.
    2. Greene, William H. & Hensher, David A. & Rose, John, 2006. "Accounting for heterogeneity in the variance of unobserved effects in mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 75-92, January.
    3. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    4. Ben-Akiva, M. & Bolduc, D. & Bradley, M., 1993. "Estimation of Travel Choice Models with Randomly Distributed Values of Time," Papers 9303, Laval - Recherche en Energie.
    5. Bhat, Chandra R., 1998. "Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 495-507, September.
    6. Hess, Stephane & Train, Kenneth E., 2011. "Recovery of inter- and intra-personal heterogeneity using mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 973-990, August.
    7. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
    8. Hess, Stephane & Hensher, David A., 2010. "Using conditioning on observed choices to retrieve individual-specific attribute processing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 781-790, July.
    9. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    10. Vishva Danthurebandara & Jie Yu & Martina Vandebroek, 2011. "Sequential choice designs to estimate the heterogeneity distribution of willingness-to-pay," Quantitative Marketing and Economics, Springer, vol. 9(4), pages 429-448, December.
    11. A. Jourdan & J. Franco, 2010. "Optimal Latin hypercube designs for the Kullback–Leibler criterion," AStA Advances in Statistical Analysis, Springer, vol. 94(4), pages 341-351, December.
    12. Kenneth Train, 2003. "Discrete Choice Methods with Simulation," Online economics textbooks, SUNY-Oswego, Department of Economics, number emetr2, September.
    13. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
    14. Hess, Stephane & Adler, Thomas & Polak, John W., 2007. "Modelling airport and airline choice behaviour with the use of stated preference survey data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(3), pages 221-233, May.
    15. Bhat, Chandra R., 2012. "Recent developments in discrete choice model formulation, estimation, and inference," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 273-275.
    16. Jie Yu & Peter Goos & Martina Vandebroek, 2009. "Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity," Marketing Science, INFORMS, vol. 28(1), pages 122-135, 01-02.
    17. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    18. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    19. Espino, Raquel & Martín, Juan Carlos & Román, Concepción, 2008. "Analyzing the effect of preference heterogeneity on willingness to pay for improving service quality in an airline choice context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(4), pages 593-606, July.
    20. Axhausen, Kay W. & Hess, Stephane & König, Arnd & Abay, Georg & Bates, John J. & Bierlaire, Michel, 2008. "Income and distance elasticities of values of travel time savings: New Swiss results," Transport Policy, Elsevier, vol. 15(3), pages 173-185, May.
    21. Chun Wang & Hua-Hua Chang, 2011. "Item Selection in Multidimensional Computerized Adaptive Testing—Gaining Information from Different Angles," Psychometrika, Springer, vol. 76(3), pages 363-384, July.
    22. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:60:y:2014:i:c:p:1-15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.