IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v28y2009i1p122-135.html
   My bibliography  Save this article

Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity

Author

Listed:
  • Jie Yu

    () (Faculty of Business and Economics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium)

  • Peter Goos

    () (Faculty of Applied Economics, Universiteit Antwerpen, B-2000 Antwerpen, Belgium)

  • Martina Vandebroek

    () (Faculty of Business and Economics and Leuven Statistics Research Centre, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium)

Abstract

Random effects or mixed logit models are often used to model differences in consumer preferences. Data from choice experiments are needed to estimate the mean vector and the variances of the multivariate heterogeneity distribution involved. In this paper, an efficient algorithm is proposed to construct semi-Bayesian -optimal mixed logit designs that take into account the uncertainty about the mean vector of the distribution. These designs are compared to locally -optimal mixed logit designs, Bayesian and locally -optimal designs for the multinomial logit model and to nearly orthogonal designs (Sawtooth (CBC)) for a wide range of parameter values. It is found that the semi-Bayesian mixed logit designs outperform the competing designs not only in terms of estimation efficiency but also in terms of prediction accuracy. In particular, it is shown that assuming large prior values for the variance parameters for constructing semi-Bayesian mixed logit designs is most robust against the misspecification of the prior mean vector. In addition, the semi-Bayesian mixed logit designs are compared to the fully Bayesian mixed logit designs, which take also into account the uncertainty about the variances in the heterogeneity distribution and which can be constructed only using prohibitively large computing power. The differences in estimation and prediction accuracy turn out to be rather small in most cases, which indicates that the semi-Bayesian approach is currently the most appropriate one if one needs to estimate mixed logit models.

Suggested Citation

  • Jie Yu & Peter Goos & Martina Vandebroek, 2009. "Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity," Marketing Science, INFORMS, vol. 28(1), pages 122-135, 01-02.
  • Handle: RePEc:inm:ormksc:v:28:y:2009:i:1:p:122-135
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1080.0386
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    2. Joel Huber and Kenneth Train., 2000. "On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths," Economics Working Papers E00-289, University of California at Berkeley.
    3. Kenneth Train ., 2000. "Halton Sequences for Mixed Logit," Economics Working Papers E00-278, University of California at Berkeley.
    4. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    5. Lan Luo & P. K. Kannan & Brian T. Ratchford, 2007. "New Product Development Under Channel Acceptance," Marketing Science, INFORMS, vol. 26(2), pages 149-163, 03-04.
    6. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
    7. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
    8. Kessels, Roselinde & Jones, Bradley & Goos, Peter & Vandebroek, Martina, 2009. "An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 279-291.
    9. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    10. Neeraj Arora & Ty Henderson, 2007. "Embedded Premium Promotion: Why It Works and How to Make It More Effective," Marketing Science, INFORMS, vol. 26(4), pages 514-531, 07-08.
    11. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    12. Glasgow, Garrett, 2001. "Mixed Logit Models for Multiparty Elections," Political Analysis, Cambridge University Press, vol. 9(02), pages 116-136, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kessels, Roselinde, 2016. "Homogeneous versus heterogeneous designs for stated choice experiments: Ain't homogeneous designs all bad?," Journal of choice modelling, Elsevier, vol. 21(C), pages 2-9.
    2. repec:bla:jorssc:v:66:y:2017:i:2:p:363-386 is not listed on IDEAS
    3. Fischer, Timo & Henkel, Joachim, 2013. "Complements and substitutes in profiting from innovation—A choice experimental approach," Research Policy, Elsevier, vol. 42(2), pages 326-339.
    4. Palhazi Cuervo, Daniel & Kessels, Roselinde & Goos, Peter & Sörensen, Kenneth, 2016. "An integrated algorithm for the optimal design of stated choice experiments with partial profiles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 648-669.
    5. repec:spr:orspec:v:39:y:2017:i:4:d:10.1007_s00291-017-0483-1 is not listed on IDEAS
    6. Bart Vermeulen & Peter Goos & Riccardo Scarpa & Martina Vandebroek, 2011. "Bayesian Conjoint Choice Designs for Measuring Willingness to Pay," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 129-149, January.
    7. Aiste Ruseckaite & Peter Goos & Dennis Fok, 2014. "Bayesian D-Optimal Choice Designs for Mixtures," Tinbergen Institute Discussion Papers 14-057/III, Tinbergen Institute.
    8. Timo Fischer & Gaétan de Rassenfosse, 2011. "Debt Financing of High-growth Startups," DRUID Working Papers 11-04, DRUID, Copenhagen Business School, Department of Industrial Economics and Strategy/Aalborg University, Department of Business Studies.
    9. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    10. Hoenig, Daniel & Henkel, Joachim, 2015. "Quality signals? The role of patents, alliances, and team experience in venture capital financing," Research Policy, Elsevier, vol. 44(5), pages 1049-1064.
    11. John Rose & Michiel Bliemer, 2013. "Sample size requirements for stated choice experiments," Transportation, Springer, vol. 40(5), pages 1021-1041, September.
    12. Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
    13. Crabbe, M. & Vandebroek, M., 2012. "Improving the efficiency of individualized designs for the mixed logit choice model by including covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2059-2072.
    14. KESSELS, Roselinde & BRADLEY, Jones & GOOS, Peter, 2012. "A comparison of partial profile designs for discrete choice experiments with an application in software development," Working Papers 2012004, University of Antwerp, Faculty of Applied Economics.
    15. Rossella Berni & Fabrizia Mealli, 2013. "Mode choice analysis of mobility in Florence. A choice experiment," Studi e approfondimenti 328, Istituto Regionale per la Programmazione Economica della Toscana.
    16. Andreas Falke & Harald Hruschka, 2017. "Setting prices in mixed logit model designs," Marketing Letters, Springer, vol. 28(1), pages 139-154, March.
    17. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    18. Crabbe, Marjolein & Akinc, Deniz & Vandebroek, Martina, 2014. "Fast algorithms to generate individualized designs for the mixed logit choice model," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:28:y:2009:i:1:p:122-135. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.