IDEAS home Printed from https://ideas.repec.org/p/ucb/calbwp/e00-289.html

On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths

Author

Listed:
  • Joel Huber and Kenneth Train.

Abstract

An exciting development in modeling has been the ability to estimate reliable individual-level parameters for choice models. Individual partworths derived from these parameters have been very useful in segmentation, identifying extreme individuals, and in creating appropriate choice simulators. In marketing, hierarchical Bayes models have taken the lead in combining information about the aggregate distribution of tastes with the individuals choices to arrive at a conditional estimate of the individuals parameters. In economics, the same behavioral model has been derived from a classical rather than a Bayesian perspective. That is, instead of Gibbs sampling, the method of maximum simulated likelihood provides estimates of both the aggregate and the individual parameters. This paper explores the similarities and differences between classical and Bayesian methods and shows that they result in virtually equivalent conditional estimates of partworths for customers. Thus, the choice between Bayesian and classical estimation becomes one of implementation convenience and philosophical orientation, rather than pragmatic usefulness.

Suggested Citation

  • Joel Huber and Kenneth Train., 2000. "On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths," Economics Working Papers E00-289, University of California at Berkeley.
  • Handle: RePEc:ucb:calbwp:e00-289
    as

    Download full text from publisher

    File URL: http://www.haas.berkeley.edu/groups/iber/wps/econ/E00-289.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucb:calbwp:e00-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/debrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.