IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i7p973-990.html
   My bibliography  Save this article

Recovery of inter- and intra-personal heterogeneity using mixed logit models

Author

Listed:
  • Hess, Stephane
  • Train, Kenneth E.

Abstract

Most applications of discrete choice models in transportation now utilise a random coefficient specification, such as mixed logit, to represent taste heterogeneity. However, little is known about the ability of these models to capture the heterogeneity in finite samples (as opposed to asymptotically). Also, due to the computational intensity of the standard estimation procedures, several alternative, less demanding methods have been proposed, and yet the relative accuracy of these methods has not been investigated. This is especially true in the context of work looking at joint inter-respondent and intra-respondent variation. This paper presents an overview of the various different estimators, gives insights into some of the theoretical properties, and analyses their performance in a large scale study on simulated data. In particular, we specify 31 different forms of heterogeneity, with multiple versions of each dataset, and with results from over 16,000 mixed logit estimation runs. The findings suggest that variation in tastes over consumers is captured by all the methods, including the simpler versions, at least when sample size is sufficiently large. When tastes vary over choice situations for each consumer, as well as over consumers, the ability of the methods to capture and differentiate the two sources of heterogeneity becomes more tenuous. Only the most computationally intensive approach is able to capture adequately the two sources of variation, but at the cost of very high run times. Our results highlight the difficulty of retrieving taste heterogeneity with only cross-sectional data, providing further evidence of the benefits of repeated choice data. Our findings also suggest that the data requirements of random coefficients models may be more substantial than is commonly assumed, further reinforcing concerns about small sample issues.

Suggested Citation

  • Hess, Stephane & Train, Kenneth E., 2011. "Recovery of inter- and intra-personal heterogeneity using mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 973-990, August.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:7:p:973-990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151100052X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    2. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    4. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    5. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    6. Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
    7. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    8. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    9. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
    10. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    11. Hess, Stephane & Rose, John M., 2009. "Allowing for intra-respondent variations in coefficients estimated on repeated choice data," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 708-719, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikołaj Czajkowski & Marek Giergiczny & William H. Greene, 2012. "Learning and Fatigue Effects Revisited. The Impact of Accounting for Unobservable Preference and Scale Heterogeneity on Perceived Ordering Effects in Multiple Choice Task Discrete Choice Experiments," Working Papers 2012-08, Faculty of Economic Sciences, University of Warsaw.
    2. Glerum, Aurélie & Atasoy, Bilge & Bierlaire, Michel, 2014. "Using semi-open questions to integrate perceptions in choice models," Journal of choice modelling, Elsevier, vol. 10(C), pages 11-33.
    3. Czajkowski, Mikolaj & Hanley, Nicholas & LaRiviere, Jacob, 2013. "The Effects of Experience on Preference Uncertainty: Theory and Empirics for Public and Quasi-Public Environmental Goods," Stirling Economics Discussion Papers 2013-11, University of Stirling, Division of Economics.
    4. Mikolaj Czajkowski & Nick Hanley & Jacob LaRiviere, 2015. "The Effects of Experience on Preferences: Theory and Empirics for Environmental Public Goods," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 333-351.
    5. Chenfeng Xiong & Xiqun Chen & Xiang He & Wei Guo & Lei Zhang, 2015. "The analysis of dynamic travel mode choice: a heterogeneous hidden Markov approach," Transportation, Springer, vol. 42(6), pages 985-1002, November.
    6. Mikolaj Czajkowski & Marek Giergiczny & William H. Greene, 2014. "Learning and Fatigue Effects Revisited: Investigating the Effects of Accounting for Unobservable Preference and Scale Heterogeneity," Land Economics, University of Wisconsin Press, vol. 90(2), pages 324-351.
    7. Richard T. Carson & Mikołaj Czajkowski, 2018. "A New Baseline Model for Estimating Willingness to Pay from Discrete Choice Models," Working Papers 2018-04, Faculty of Economic Sciences, University of Warsaw.
    8. Dekker, Thijs & Hess, Stephane & Brouwer, Roy & Hofkes, Marjan, 2016. "Decision uncertainty in multi-attribute stated preference studies," Resource and Energy Economics, Elsevier, vol. 43(C), pages 57-73.
    9. Dawei Li & Tomio Miwa & Takayuki Morikawa, 2014. "Considering En-Route Choices in Utility-Based Route Choice Modelling," Networks and Spatial Economics, Springer, vol. 14(3), pages 581-604, December.
    10. Swait, Joffre & Brigden, Neil & Johnson, Richard D., 2014. "Categories shape preferences: A model of taste heterogeneity arising from categorization of alternatives," Journal of choice modelling, Elsevier, vol. 13(C), pages 3-23.
    11. repec:eee:ecolec:v:148:y:2018:i:c:p:36-42 is not listed on IDEAS
    12. repec:sss:wpaper:201405 is not listed on IDEAS
    13. Hess, Stephane & Stathopoulos, Amanda, 2013. "Linking response quality to survey engagement: A combined random scale and latent variable approach," Journal of choice modelling, Elsevier, vol. 7(C), pages 1-12.
    14. Crabbe, Marjolein & Akinc, Deniz & Vandebroek, Martina, 2014. "Fast algorithms to generate individualized designs for the mixed logit choice model," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 1-15.
    15. Stephane Hess & Marek Giergiczny, 2015. "Intra-respondent Heterogeneity in a Stated Choice Survey on Wetland Conservation in Belarus: First Steps Towards Creating a Link with Uncertainty in Contingent Valuation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(3), pages 327-347, March.
    16. Javier Anta & José B. Pérez-López & Ana Martínez-Pardo & Margarita Novales & Alfonso Orro, 2016. "Influence of the weather on mode choice in corridors with time-varying congestion: a mixed data study," Transportation, Springer, vol. 43(2), pages 337-355, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:7:p:973-990. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.