IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i7p940-953.html
   My bibliography  Save this article

A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models

Author

Listed:
  • Bhat, Chandra R.
  • Sidharthan, Raghuprasad

Abstract

This paper evaluates the ability of the maximum approximate composite marginal likelihood (MACML) estimation approach to recover parameters from finite samples in mixed cross-sectional and panel multinomial probit models. Comparisons with the maximum simulated likelihood (MSL) estimation approach are also undertaken. The results indicate that the MACML approach recovers parameters much more accurately than the MSL approach in all model structures and covariance specifications. The MACML inference approach also estimates the parameters efficiently, with the asymptotic standard errors being, in general, only a small proportion of the true values. As importantly, the MACML inference approach takes only a very small fraction of the time needed for MSL estimation. In particular, the results suggest that, for the case of five random coefficients, the MACML approach is about 50 times faster than the MSL for the cross-sectional random coefficients case, about 15 times faster than the MSL for the panel inter-individual random coefficients case, and about 350 times or more faster than the MSL for the panel intra- and inter-individual random coefficients case. As the number of alternatives in the unordered-response model increases, one can expect even higher computational efficiency factors for the MACML over the MSL approach. Further, as should be evident in the panel intra- and inter-individual random coefficients case, the MSL is all but practically infeasible when the mixing structure leads to an explosion in the dimensionality of integration in the likelihood function, but these situations are handled with ease in the MACML approach. It is hoped that the MACML procedure will spawn empirical research into rich model specifications within the context of unordered multinomial choice modeling, including autoregressive random coefficients, dynamics in coefficients, space-time effects, and spatial/social interactions.

Suggested Citation

  • Bhat, Chandra R. & Sidharthan, Raghuprasad, 2011. "A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 940-953, August.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:7:p:940-953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261511000506
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sándor, Zsolt & Train, Kenneth, 2004. "Quasi-random simulation of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    3. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    4. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    5. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
    6. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    7. Hess, Stephane & Rose, John M., 2009. "Allowing for intra-respondent variations in coefficients estimated on repeated choice data," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 708-719, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandra Bhat & Abdul Pinjari, 2014. "Multiple discrete-continuous choice models: a reflective analysis and a prospective view," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 19, pages 427-454, Edward Elgar Publishing.
    2. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    3. Batram, Manuel & Bauer, Dietmar, 2019. "On consistency of the MACML approach to discrete choice modelling," Journal of choice modelling, Elsevier, vol. 30(C), pages 1-16.
    4. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.
    5. Abdul Pinjari & Chandra Bhat & David S. Bunch, 2013. "Workshop report: recent advances on modeling multiple discrete-continuous choices," Chapters, in: Stephane Hess & Andrew Daly (ed.), Choice Modelling, chapter 3, pages 73-90, Edward Elgar Publishing.
    6. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    7. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
    8. Bhat, Chandra R., 2015. "A new generalized heterogeneous data model (GHDM) to jointly model mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 50-77.
    9. Bansal, Prateek & Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H., 2020. "Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 124-142.
    10. Xuemei Fu & Zhicai Juan, 2017. "Estimation of multinomial probit-kernel integrated choice and latent variable model: comparison on one sequential and two simultaneous approaches," Transportation, Springer, vol. 44(1), pages 91-116, January.
    11. Rodrigues, Filipe, 2022. "Scaling Bayesian inference of mixed multinomial logit models to large datasets," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 1-17.
    12. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.
    13. Danaf, Mazen & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Logit mixture with inter and intra-consumer heterogeneity and flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 35(C).
    14. Patil, Priyadarshan N. & Dubey, Subodh K. & Pinjari, Abdul R. & Cherchi, Elisabetta & Daziano, Ricardo & Bhat, Chandra R., 2017. "Simulation evaluation of emerging estimation techniques for multinomial probit models," Journal of choice modelling, Elsevier, vol. 23(C), pages 9-20.
    15. Xiong, Yingge & Mannering, Fred L., 2013. "The heterogeneous effects of guardian supervision on adolescent driver-injury severities: A finite-mixture random-parameters approach," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 39-54.
    16. Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
    17. Prateek Bansal & Rico Krueger & Michel Bierlaire & Ricardo A. Daziano & Taha H. Rashidi, 2019. "Bayesian Estimation of Mixed Multinomial Logit Models: Advances and Simulation-Based Evaluations," Papers 1904.03647, arXiv.org, revised Dec 2019.
    18. Bhat, Chandra R., 2018. "New matrix-based methods for the analytic evaluation of the multivariate cumulative normal distribution function," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 238-256.
    19. Bhat, Chandra R. & Dubey, Subodh K., 2014. "A new estimation approach to integrate latent psychological constructs in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 68-85.
    20. Becker, Felix & Danaf, Mazen & Song, Xiang & Atasoy, Bilge & Ben-Akiva, Moshe, 2018. "Bayesian estimator for Logit Mixtures with inter- and intra-consumer heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 1-17.
    21. Frank Goetzke & Regine Gerike & Antonio Páez & Elenna Dugundji, 2015. "Social interactions in transportation: analyzing groups and spatial networks," Transportation, Springer, vol. 42(5), pages 723-731, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hess, Stephane & Train, Kenneth E., 2011. "Recovery of inter- and intra-personal heterogeneity using mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 973-990, August.
    2. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    3. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    4. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    5. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    6. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    7. Staus, Alexander, 2008. "Standard and Shuffled Halton Sequences in a Mixed Logit Model," Working Papers 93856, Universitaet Hohenheim, Institute of Agricultural Policy and Agricultural Markets.
    8. Zhu, Dianchen & Sze, N.N. & Feng, Zhongxiang & Chan, Ho-Yin, 2023. "Waiting for signalized crossing or walking to footbridge/underpass? Examining the effect of weather using stated choice experiment with panel mixed random regret minimization approach," Transport Policy, Elsevier, vol. 138(C), pages 144-169.
    9. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    10. Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.
    11. Junyi Shen & Yusuke Sakata & Yoshizo Hashimoto, 2006. "A Comparison between Latent Class Model and Mixed Logit Model for Transport Mode Choice: Evidences from Two Datasets of Japan," Discussion Papers in Economics and Business 06-05, Osaka University, Graduate School of Economics.
    12. Eran Ben-Elia & Robert Ishaq & Yoram Shiftan, 2013. "“If only I had taken the other road...”: Regret, risk and reinforced learning in informed route-choice," Transportation, Springer, vol. 40(2), pages 269-293, February.
    13. Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020. "The order of variables, simulation noise, and accuracy of mixed logit estimates," Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
    14. Becker, Felix & Danaf, Mazen & Song, Xiang & Atasoy, Bilge & Ben-Akiva, Moshe, 2018. "Bayesian estimator for Logit Mixtures with inter- and intra-consumer heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 1-17.
    15. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.
    16. Stephane Hess & Denis Bolduc & John Polak, 2010. "Random covariance heterogeneity in discrete choice models," Transportation, Springer, vol. 37(3), pages 391-411, May.
    17. Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
    18. Munger, D. & L’Ecuyer, P. & Bastin, F. & Cirillo, C. & Tuffin, B., 2012. "Estimation of the mixed logit likelihood function by randomized quasi-Monte Carlo," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 305-320.
    19. Liu, Henry X. & He, Xiaozheng & Recker, Will, 2007. "Estimation of the time-dependency of values of travel time and its reliability from loop detector data," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 448-461, May.
    20. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:7:p:940-953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.