IDEAS home Printed from
   My bibliography  Save this article

A new generalized heterogeneous data model (GHDM) to jointly model mixed types of dependent variables


  • Bhat, Chandra R.


This paper formulates a generalized heterogeneous data model (GHDM) that jointly handles mixed types of dependent variables—including multiple nominal outcomes, multiple ordinal variables, and multiple count variables, as well as multiple continuous variables—by representing the covariance relationships among them through a reduced number of latent factors. Sufficiency conditions for identification of the GHDM parameters are presented. The maximum approximate composite marginal likelihood (MACML) method is proposed to estimate this jointly mixed model system. This estimation method provides computational time advantages since the dimensionality of integration in the likelihood function is independent of the number of latent factors. The study undertakes a simulation experiment within the virtual context of integrating residential location choice and travel behavior to evaluate the ability of the MACML approach to recover parameters. The simulation results show that the MACML approach effectively recovers underlying parameters, and also that ignoring the multi-dimensional nature of the relationship among mixed types of dependent variables can lead not only to inconsistent parameter estimation, but also have important implications for policy analysis.

Suggested Citation

  • Bhat, Chandra R., 2015. "A new generalized heterogeneous data model (GHDM) to jointly model mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 50-77.
  • Handle: RePEc:eee:transb:v:79:y:2015:i:c:p:50-77
    DOI: 10.1016/j.trb.2015.05.017

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Mokhtarian, Patricia L. & Cao, Xinyu, 2008. "Examining the impacts of residential self-selection on travel behavior: A focus on methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 204-228, March.
    2. Chandra R. Bhat & Rajesh Paleti & Palvinder Singh, 2014. "A Spatial Multivariate Count Model For Firm Location Decisions," Journal of Regional Science, Wiley Blackwell, vol. 54(3), pages 462-502, June.
    3. Bhat, Chandra R. & Sidharthan, Raghuprasad, 2011. "A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 940-953, August.
    4. Kim, Jinwon & Brownstone, David, 2013. "The impact of residential density on vehicle usage and fuel consumption: Evidence from national samples," Energy Economics, Elsevier, vol. 40(C), pages 196-206.
    5. Munkin, Murat K. & Trivedi, Pravin K., 2008. "Bayesian analysis of the ordered probit model with endogenous selection," Journal of Econometrics, Elsevier, vol. 143(2), pages 334-348, April.
    6. Heckman, James J. & Vytlacil, Edward J., 2000. "The relationship between treatment parameters within a latent variable framework," Economics Letters, Elsevier, vol. 66(1), pages 33-39, January.
    7. Bhat, Chandra R. & Guo, Jessica Y., 2007. "A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 506-526, June.
    8. Cao, Xinyu & Mokhtarian, Patricia & Handy, Susan, 2008. "Examining The Impacts of Residential Self-Selection on Travel Behavior: Methodologies and Empirical Findings," Institute of Transportation Studies, Working Paper Series qt08x1k476, Institute of Transportation Studies, UC Davis.
    9. Clark, William A. V. & Huang, Youqin & Withers, Suzanne, 2003. "Does commuting distance matter?: Commuting tolerance and residential change," Regional Science and Urban Economics, Elsevier, vol. 33(2), pages 199-221, March.
    10. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2011. "Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions," Transportation, Springer, vol. 38(6), pages 933-958, November.
    11. Brownstone, David & Golob, Thomas F., 2009. "The impact of residential density on vehicle usage and energy consumption," Journal of Urban Economics, Elsevier, vol. 65(1), pages 91-98, January.
    12. Shiftan, Yoram & Outwater, Maren L. & Zhou, Yushuang, 2008. "Transit market research using structural equation modeling and attitudinal market segmentation," Transport Policy, Elsevier, vol. 15(3), pages 186-195, May.
    13. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    14. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    15. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    16. Bhat, Chandra R. & Astroza, Sebastian & Sidharthan, Raghuprasad & Alam, Mohammad Jobair Bin & Khushefati, Waleed H., 2014. "A joint count-continuous model of travel behavior with selection based on a multinomial probit residential density choice model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 31-51.
    17. Rashidi, Taha Hossein & Auld, Joshua & Mohammadian, Abolfazl (Kouros), 2012. "A behavioral housing search model: Two-stage hazard-based and multinomial logit approach to choice-set formation and location selection," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1097-1107.
    18. James Heckman & Justin L. Tobias & Edward Vytlacil, 2001. "Four Parameters of Interest in the Evaluation of Social Programs," Southern Economic Journal, Southern Economic Association, vol. 68(2), pages 210-223, October.
    19. Tim Schwanen & Patricia L. Mokhtarian, 2007. "Attitudes toward travel and land use and choice of residential neighborhood type: Evidence from the San Francisco bay area," Housing Policy Debate, Taylor & Francis Journals, vol. 18(1), pages 171-207, January.
    20. de Leon, A.R. & Zhu, Y., 2008. "ANOVA extensions for mixed discrete and continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2218-2227, January.
    21. Ipek Sener & Naveen Eluru & Chandra Bhat, 2009. "An analysis of bicycle route choice preferences in Texas, US," Transportation, Springer, vol. 36(5), pages 511-539, September.
    22. Bhat, Chandra R., 2014. "The Composite Marginal Likelihood (CML) Inference Approach with Applications to Discrete and Mixed Dependent Variable Models," Foundations and Trends(R) in Econometrics, now publishers, vol. 7(1), pages 1-117, July.
    23. A. R. de Leon & A. Soo & T. Williamson, 2011. "Classification with discrete and continuous variables via general mixed-data models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 1021-1032, February.
    24. Bhat, Chandra R. & Dubey, Subodh K., 2014. "A new estimation approach to integrate latent psychological constructs in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 68-85.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kamargianni, Maria & Dubey, Subodh & Polydoropoulou, Amalia & Bhat, Chandra, 2015. "Investigating the subjective and objective factors influencing teenagers’ school travel mode choice – An integrated choice and latent variable model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 473-488.
    2. Bhat, Chandra R., 2015. "A comprehensive dwelling unit choice model accommodating psychological constructs within a search strategy for consideration set formation," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 161-188.
    3. Bhat, Chandra R. & Pinjari, Abdul R. & Dubey, Subodh K. & Hamdi, Amin S., 2016. "On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 240-263.
    4. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:79:y:2015:i:c:p:50-77. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.