IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v94y2016icp240-263.html
   My bibliography  Save this article

On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables

Author

Listed:
  • Bhat, Chandra R.
  • Pinjari, Abdul R.
  • Dubey, Subodh K.
  • Hamdi, Amin S.

Abstract

We develop an econometric framework for incorporating spatial dependence in integrated model systems of latent variables and multidimensional mixed data outcomes. The framework combines Bhat's Generalized Heterogeneous Data Model (GHDM) with a spatial (social) formulation to parsimoniously introduce spatial (social) dependencies through latent constructs. The applicability of the spatial GHDM framework is demonstrated through an empirical analysis of spatial dependencies in a multidimensional mixed data bundle comprising a variety of household choices – household commute distance, residential location (density) choice, vehicle ownership, parents’ commute mode choice, and children's school mode choice – along with other measurement variables for two latent constructs – parent's safety concerns about children walking/biking to school and active lifestyle propensity. The GHDM framework identifies an intricate web of causal relationships and endogeneity among the endogenous variables. Furthermore, the spatial (social) version of the GHDM model reveals a high level of spatial (social) dependency in the latent active lifestyle propensity of different households and moderate level of spatial dependency in parents’ safety concerns. Ignoring spatial (social) dependencies in the empirical model results in inferior data fit, potential bias and statistical insignificance of the parameters corresponding to nominal variables, and underestimation of policy impacts.

Suggested Citation

  • Bhat, Chandra R. & Pinjari, Abdul R. & Dubey, Subodh K. & Hamdi, Amin S., 2016. "On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 240-263.
  • Handle: RePEc:eee:transb:v:94:y:2016:i:c:p:240-263
    DOI: 10.1016/j.trb.2016.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516303010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chandra R. Bhat & Rajesh Paleti & Palvinder Singh, 2014. "A Spatial Multivariate Count Model For Firm Location Decisions," Journal of Regional Science, Wiley Blackwell, vol. 54(3), pages 462-502, June.
    2. Bhat, Chandra R., 2015. "A comprehensive dwelling unit choice model accommodating psychological constructs within a search strategy for consideration set formation," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 161-188.
    3. Rachel Copperman & Chandra Bhat, 2007. "An analysis of the determinants of children’s weekend physical activity participation," Transportation, Springer, vol. 34(1), pages 67-87, January.
    4. Terza, Joseph V. & Basu, Anirban & Rathouz, Paul J., 2008. "Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling," Journal of Health Economics, Elsevier, vol. 27(3), pages 531-543, May.
    5. Bhat, Chandra R. & Guo, Jessica Y., 2007. "A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 506-526, June.
    6. P. Elhorst & M. Abreu & P. Amaral & A. Bhattacharjee & L. Corrado & B. Fingleton & F. Fuerst & H. Garretsen & D. Igliori & J. Le Gallo & P. McCann & V. Monastiriotis & G. Pryce & J. Yu, 2016. "Raising the bar (1)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 11(1), pages 1-6, March.
    7. Brownstone, David & Fang, Hao (Audrey), 2014. "A vehicle ownership and utilization choice model with endogenous residential density," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 135-151.
    8. David M. Cutler & Adriana Lleras-Muney, 2006. "Education and Health: Evaluating Theories and Evidence," NBER Working Papers 12352, National Bureau of Economic Research, Inc.
    9. Ipek Sener & Chandra Bhat, 2012. "Modeling the spatial and temporal dimensions of recreational activity participation with a focus on physical activities," Transportation, Springer, vol. 39(3), pages 627-656, May.
    10. Bhat, Chandra R., 2015. "A new generalized heterogeneous data model (GHDM) to jointly model mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 50-77.
    11. Henry Saffer & Dhaval Dave & Michael Grossman & Leigh Ann Leung, 2013. "Racial, Ethnic, and Gender Differences in Physical Activity," Journal of Human Capital, University of Chicago Press, vol. 7(4), pages 378-410.
    12. Chandra Bhat, 2015. "A new spatial (social) interaction discrete choice model accommodating for unobserved effects due to endogenous network formation," Transportation, Springer, vol. 42(5), pages 879-914, September.
    13. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    14. Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
    15. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    16. Elizabeth J Wilson & Julian Marshall & Ryan Wilson & Kevin J Krizek, 2010. "By Foot, Bus or Car: Children's School Travel and School Choice Policy," Environment and Planning A, , vol. 42(9), pages 2168-2185, September.
    17. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    18. Bhat, Chandra R. & Astroza, Sebastian & Sidharthan, Raghuprasad & Alam, Mohammad Jobair Bin & Khushefati, Waleed H., 2014. "A joint count-continuous model of travel behavior with selection based on a multinomial probit residential density choice model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 31-51.
    19. Rashidi, Taha Hossein & Auld, Joshua & Mohammadian, Abolfazl (Kouros), 2012. "A behavioral housing search model: Two-stage hazard-based and multinomial logit approach to choice-set formation and location selection," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1097-1107.
    20. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
    21. Noreen McDonald, 2008. "Children’s mode choice for the school trip: the role of distance and school location in walking to school," Transportation, Springer, vol. 35(1), pages 23-35, January.
    22. Ipek Sener & Rachel Copperman & Ram Pendyala & Chandra Bhat, 2008. "An analysis of children’s leisure activity engagement: examining the day of week, location, physical activity level, and fixity dimensions," Transportation, Springer, vol. 35(5), pages 673-696, August.
    23. de Leon, A.R. & Zhu, Y., 2008. "ANOVA extensions for mixed discrete and continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2218-2227, January.
    24. Amith Yarlagadda & Sivaramakrishnan Srinivasan, 2008. "Modeling children’s school travel mode and parental escort decisions," Transportation, Springer, vol. 35(2), pages 201-218, March.
    25. Joan Walker & Jieping Li, 2007. "Latent lifestyle preferences and household location decisions," Journal of Geographical Systems, Springer, vol. 9(1), pages 77-101, April.
    26. Bhat, Chandra R., 2014. "The Composite Marginal Likelihood (CML) Inference Approach with Applications to Discrete and Mixed Dependent Variable Models," Foundations and Trends(R) in Econometrics, now publishers, vol. 7(1), pages 1-117, July.
    27. Selima Sultana & Joe Weber, 2014. "The Nature of Urban Growth and the Commuting Transition: Endless Sprawl or a Growth Wave?," Urban Studies, Urban Studies Journal Limited, vol. 51(3), pages 544-576, February.
    28. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    29. Wang, Honglin & Iglesias, Emma M. & Wooldridge, Jeffrey M., 2013. "Partial maximum likelihood estimation of spatial probit models," Journal of Econometrics, Elsevier, vol. 172(1), pages 77-89.
    30. Nazneen Ferdous & Chandra Bhat, 2013. "A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns," Journal of Geographical Systems, Springer, vol. 15(1), pages 1-29, January.
    31. Broberg, Anna & Sarjala, Satu, 2015. "School travel mode choice and the characteristics of the urban built environment: The case of Helsinki, Finland," Transport Policy, Elsevier, vol. 37(C), pages 1-10.
    32. Bhat, Chandra R. & Sen, Sudeshna & Eluru, Naveen, 2009. "The impact of demographics, built environment attributes, vehicle characteristics, and gasoline prices on household vehicle holdings and use," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 1-18, January.
    33. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2011. "Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions," Transportation, Springer, vol. 38(6), pages 933-958, November.
    34. Kurt J. Beron & Wim P. M. Vijverberg, 2004. "Probit in a Spatial Context: A Monte Carlo Analysis," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 8, pages 169-195, Springer.
    35. Ipek Sener & Chandra Bhat, 2007. "An analysis of the social context of children’s weekend discretionary activity participation," Transportation, Springer, vol. 34(6), pages 697-721, November.
    36. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    37. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    38. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    39. Smirnov, Oleg A., 2010. "Modeling spatial discrete choice," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 292-298, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhat, Chandra R. & Astroza, Sebastian & Hamdi, Amin S., 2017. "A spatial generalized ordered-response model with skew normal kernel error terms with an application to bicycling frequency," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 126-148.
    2. Blake, Miranda R. & Dubey, Subodh & Swait, Joffre & Lancsar, Emily & Ghijben, Peter, 2020. "An integrated modelling approach examining the influence of goals, habit and learning on choice using visual attention data," Journal of Business Research, Elsevier, vol. 117(C), pages 44-57.
    3. Bhat, Chandra R. & Mondal, Aupal, 2022. "A New Flexible Generalized Heterogeneous Data Model (GHDM) with an Application to Examine the Effect of High Density Neighborhood Living on Bicycling Frequency," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 244-266.
    4. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    5. Mothafer, Ghasak I.M.A. & Yamamoto, Toshiyuki & Shankar, Venkataraman N., 2018. "A multivariate heterogeneous-dispersion count model for asymmetric interdependent freeway crash types," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 84-105.
    6. Asmussen, Katherine E. & Mondal, Aupal & Bhat, Chandra R., 2022. "Adoption of partially automated vehicle technology features and impacts on vehicle miles of travel (VMT)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 156-179.
    7. Loder, Allister & Tanner, Reto & Axhausen, Kay W., 2017. "The impact of local work and residential balance on vehicle miles traveled: A new direct approach," Journal of Transport Geography, Elsevier, vol. 64(C), pages 139-149.
    8. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    9. Subodh Dubey & Ishant Sharma & Sabyasachee Mishra & Oded Cats & Prateek Bansal, 2021. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Papers 2109.06169, arXiv.org.
    10. Vinayak, Pragun & Dias, Felipe F. & Astroza, Sebastian & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Accounting for multi-dimensional dependencies among decision-makers within a generalized model framework: An application to understanding shared mobility service usage levels," Transport Policy, Elsevier, vol. 72(C), pages 129-137.
    11. Chen, Roger B., 2018. "Models of count with endogenous choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 862-875.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
    2. Mondal, Aupal & Bhat, Chandra R., 2022. "A spatial rank-ordered probit model with an application to travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 374-393.
    3. Chandra Bhat, 2015. "A new spatial (social) interaction discrete choice model accommodating for unobserved effects due to endogenous network formation," Transportation, Springer, vol. 42(5), pages 879-914, September.
    4. Bhat, Chandra R., 2015. "A new generalized heterogeneous data model (GHDM) to jointly model mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 50-77.
    5. Bhat, Chandra R., 2015. "A comprehensive dwelling unit choice model accommodating psychological constructs within a search strategy for consideration set formation," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 161-188.
    6. Bhat, Chandra R. & Mondal, Aupal, 2022. "A New Flexible Generalized Heterogeneous Data Model (GHDM) with an Application to Examine the Effect of High Density Neighborhood Living on Bicycling Frequency," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 244-266.
    7. Ipek Sener & Chandra Bhat, 2012. "Flexible spatial dependence structures for unordered multinomial choice models: formulation and application to teenagers’ activity participation," Transportation, Springer, vol. 39(3), pages 657-683, May.
    8. Bhat, Chandra R. & Astroza, Sebastian & Hamdi, Amin S., 2017. "A spatial generalized ordered-response model with skew normal kernel error terms with an application to bicycling frequency," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 126-148.
    9. Leung, Kevin Y.K. & Astroza, Sebastian & Loo, Becky P.Y. & Bhat, Chandra R., 2019. "An environment-people interactions framework for analysing children's extra-curricular activities and active transport," Journal of Transport Geography, Elsevier, vol. 74(C), pages 341-358.
    10. Chandra R. Bhat & Patrícia S. Lavieri, 2018. "A new mixed MNP model accommodating a variety of dependent non-normal coefficient distributions," Theory and Decision, Springer, vol. 84(2), pages 239-275, March.
    11. Zhou, Yiwei & Wang, Xiaokun & Holguín-Veras, José, 2016. "Discrete choice with spatial correlation: A spatial autoregressive binary probit model with endogenous weight matrix (SARBP-EWM)," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 440-455.
    12. Bhat, Chandra R. & Astroza, Sebastian & Sidharthan, Raghuprasad & Alam, Mohammad Jobair Bin & Khushefati, Waleed H., 2014. "A joint count-continuous model of travel behavior with selection based on a multinomial probit residential density choice model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 31-51.
    13. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    14. Lin, Jen-Jia & Yu, Tzu-Pen, 2011. "Built environment effects on leisure travel for children: Trip generation and travel mode," Transport Policy, Elsevier, vol. 18(1), pages 246-258, January.
    15. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
    16. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    17. J. Paul Elhorst & Pim Heijnen & Anna Samarina & Jan P. A. M. Jacobs, 2017. "Transitions at Different Moments in Time: A Spatial Probit Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 422-439, March.
    18. Nobel, Anne & Lizin, Sebastien & Malina, Robert, 2023. "What drives the designation of protected areas? Accounting for spatial dependence using a composite marginal likelihood approach," Ecological Economics, Elsevier, vol. 205(C).
    19. Jean-Sauveur Ay & Raja Chakir & Julie Le Gallo, 2014. "The effects of scale, space and time on the predictive accuracy of land use models," Working Papers 2014/02, INRA, Economie Publique.
    20. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:94:y:2016:i:c:p:240-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.