IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v34y2007i1p67-87.html
   My bibliography  Save this article

An analysis of the determinants of children’s weekend physical activity participation

Author

Listed:
  • Rachel Copperman
  • Chandra Bhat

Abstract

This paper examines the out-of-home, weekend, time-use patterns of children aged 5–17 years, with a specific emphasis on their physical activity participation. The impact of several types of factors, including individual and household demographics, neighborhood demographics, built environment characteristics, and activity day variables, on physical activity participation is analyzed using a joint nested multiple discrete–continuous extreme value-binary choice model. The sample for analysis is drawn from the 2000 San Francisco Bay Area Travel Survey. The model developed in the paper can be used to assess the impacts of changing demographics and built environment characteristics on children’s physical activity levels. Copyright Springer Science+Business Media B.V. 2007

Suggested Citation

  • Rachel Copperman & Chandra Bhat, 2007. "An analysis of the determinants of children’s weekend physical activity participation," Transportation, Springer, vol. 34(1), pages 67-87, January.
  • Handle: RePEc:kap:transp:v:34:y:2007:i:1:p:67-87
    DOI: 10.1007/s11116-006-0005-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-006-0005-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-006-0005-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Colin Black & Alan Collins & Martin Snell, 2001. "Encouraging Walking: The Case of Journey-to-school Trips in Compact Urban Areas," Urban Studies, Urban Studies Journal Limited, vol. 38(7), pages 1121-1141, June.
    2. Sallis, James F. & Frank, Lawrence D. & Saelens, Brian E. & Kraft, M. Katherine, 2004. "Active transportation and physical activity: opportunities for collaboration on transportation and public health research," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(4), pages 249-268, May.
    3. Chandra Bhat & Frank Koppelman, 1999. "A retrospective and prospective survey of time-use research," Transportation, Springer, vol. 26(2), pages 119-139, May.
    4. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Sen, Sudeshna, 2006. "A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 827-850, December.
    5. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    6. Pucher, J. & Dijkstra, L., 2003. "Promoting Safe Walking and Cycling to Improve Public Health: Lessons from The Netherlands and Germany," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1509-1516.
    7. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elias, Wafa & Katoshevski-Cavari, Rachel, 2014. "The role of socio-economic and environmental characteristics in school-commuting behavior: A comparative study of Jewish and Arab children in Israel," Transport Policy, Elsevier, vol. 32(C), pages 79-87.
    2. Scott, Darren M. & He, Sylvia Y., 2012. "Modeling constrained destination choice for shopping: a GIS-based, time-geographic approach," Journal of Transport Geography, Elsevier, vol. 23(C), pages 60-71.
    3. Stylianos Kolidakis & Kornilia Maria Kotoula & George Botzoris & Petros Fotios Kamberi & Dimitrios Skoutas, 2024. "Assessing Impact Factors That Affect School Mobility Utilizing a Machine Learning Approach," Sustainability, MDPI, vol. 16(2), pages 1-31, January.
    4. Jian, Sisi & Rashidi, Taha Hossein & Dixit, Vinayak, 2017. "An analysis of carsharing vehicle choice and utilization patterns using multiple discrete-continuous extreme value (MDCEV) models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 362-376.
    5. M Said & A Biehl & A Stathopoulos, 2020. "Interdependence in active mobility adoption: Joint modelling and motivational spill-over in walking, cycling and bike-sharing," Papers 2006.16920, arXiv.org, revised Oct 2020.
    6. Ipek Sener & Rachel Copperman & Ram Pendyala & Chandra Bhat, 2008. "An analysis of children’s leisure activity engagement: examining the day of week, location, physical activity level, and fixity dimensions," Transportation, Springer, vol. 35(5), pages 673-696, August.
    7. Andrew F. Clark & Darren M. Scott, 2016. "Barriers to Walking: An Investigation of Adults in Hamilton (Ontario, Canada)," IJERPH, MDPI, vol. 13(2), pages 1-12, January.
    8. Han Dong & Cinzia Cirillo & Marco Diana, 2018. "Activity involvement and time spent on computers for leisure: an econometric analysis on the American Time Use Survey dataset," Transportation, Springer, vol. 45(2), pages 429-449, March.
    9. Pinjari, Abdul Rawoof & Bhat, Chandra R. & Hensher, David A., 2009. "Residential self-selection effects in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 729-748, August.
    10. Khandker Habib, 2011. "A random utility maximization (RUM) based dynamic activity scheduling model: Application in weekend activity scheduling," Transportation, Springer, vol. 38(1), pages 123-151, January.
    11. Annesha Enam & Karthik C. Konduri & Naveen Eluru & Srinath Ravulaparthy, 2018. "Relationship between well-being and daily time use of elderly: evidence from the disabilities and use of time survey," Transportation, Springer, vol. 45(6), pages 1783-1810, November.
    12. Tal, Gil & Handy, Susan L, 2008. "Children’s Bicycling to After-School Activities: The Case of the Davis AYSO Bike-to-Soccer Program," Institute of Transportation Studies, Working Paper Series qt9rm842st, Institute of Transportation Studies, UC Davis.
    13. Ipek Sener & Chandra Bhat, 2012. "Modeling the spatial and temporal dimensions of recreational activity participation with a focus on physical activities," Transportation, Springer, vol. 39(3), pages 627-656, May.
    14. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    15. Clark, Andrew F. & Scott, Darren M., 2013. "Does the social environment influence active travel? An investigation of walking in Hamilton, Canada," Journal of Transport Geography, Elsevier, vol. 31(C), pages 278-285.
    16. Maite Adames Torres & Hye Won Oh & Jeongwoo Lee, 2022. "The Built Environment and Children’s Active Commuting to School: A Case Study of San Pedro De Macoris, the Dominican Republic," Land, MDPI, vol. 11(9), pages 1-19, September.
    17. Chandra Bhat & Ipek Sener, 2009. "A copula-based closed-form binary logit choice model for accommodating spatial correlation across observational units," Journal of Geographical Systems, Springer, vol. 11(3), pages 243-272, September.
    18. Bhat, Chandra R. & Pinjari, Abdul R. & Dubey, Subodh K. & Hamdi, Amin S., 2016. "On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 240-263.
    19. Lin, Jen-Jia & Yu, Tzu-Pen, 2011. "Built environment effects on leisure travel for children: Trip generation and travel mode," Transport Policy, Elsevier, vol. 18(1), pages 246-258, January.
    20. van Loon, Josh & Frank, Lawrence D. & Nettlefold, Lindsay & Naylor, Patti-Jean, 2014. "Youth physical activity and the neighbourhood environment: Examining correlates and the role of neighbourhood definition," Social Science & Medicine, Elsevier, vol. 104(C), pages 107-115.
    21. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
    22. Jäggi, Boris & Weis, Claude & Axhausen, Kay W., 2013. "Stated response and multiple discrete-continuous choice models: Analyses of residuals," Journal of choice modelling, Elsevier, vol. 6(C), pages 44-59.
    23. Ziqi Zhang & Zhi Qiu, 2020. "Exploring Daily Activity Patterns on the Typical Day of Older Adults for Supporting Aging-in-Place in China’s Rural Environment," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    24. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinjari, Abdul Rawoof & Bhat, Chandra R. & Hensher, David A., 2009. "Residential self-selection effects in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 729-748, August.
    2. Ipek Sener & Chandra Bhat, 2007. "An analysis of the social context of children’s weekend discretionary activity participation," Transportation, Springer, vol. 34(6), pages 697-721, November.
    3. Rajesh Paleti & Rachel Copperman & Chandra Bhat, 2011. "An empirical analysis of children’s after school out-of-home activity-location engagement patterns and time allocation," Transportation, Springer, vol. 38(2), pages 273-303, March.
    4. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Sen, Sudeshna, 2006. "A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 827-850, December.
    5. Ipek Sener & Naveen Eluru & Chandra Bhat, 2009. "An analysis of bicycle route choice preferences in Texas, US," Transportation, Springer, vol. 36(5), pages 511-539, September.
    6. Bhat, Chandra R. & Sen, Sudeshna & Eluru, Naveen, 2009. "The impact of demographics, built environment attributes, vehicle characteristics, and gasoline prices on household vehicle holdings and use," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 1-18, January.
    7. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
    8. Marcela Munizaga & Sergio Jara-Díaz & Paulina Greeven & Chandra Bhat, 2008. "Econometric Calibration of the Joint Time Assignment--Mode Choice Model," Transportation Science, INFORMS, vol. 42(2), pages 208-219, May.
    9. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    10. Chandra Bhat & Konstadinos Goulias & Ram Pendyala & Rajesh Paleti & Raghuprasad Sidharthan & Laura Schmitt & Hsi-Hwa Hu, 2013. "A household-level activity pattern generation model with an application for Southern California," Transportation, Springer, vol. 40(5), pages 1063-1086, September.
    11. Millward, Hugh & Spinney, Jamie & Scott, Darren, 2013. "Active-transport walking behavior: destinations, durations, distances," Journal of Transport Geography, Elsevier, vol. 28(C), pages 101-110.
    12. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    13. Lake Sagaris, 2015. "Lessons from 40 years of planning for cycle‐inclusion: Reflections from Santiago, Chile," Natural Resources Forum, Blackwell Publishing, vol. 39(1), pages 64-81, February.
    14. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
    15. Bhat, Chandra R. & Castro, Marisol & Pinjari, Abdul Rawoof, 2015. "Allowing for complementarity and rich substitution patterns in multiple discrete–continuous models," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 59-77.
    16. Chandra Bhat & Abdul Pinjari, 2014. "Multiple discrete-continuous choice models: a reflective analysis and a prospective view," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 19, pages 427-454, Edward Elgar Publishing.
    17. Erika Spissu & Abdul Pinjari & Chandra Bhat & Ram Pendyala & Kay Axhausen, 2009. "An analysis of weekly out-of-home discretionary activity participation and time-use behavior," Transportation, Springer, vol. 36(5), pages 483-510, September.
    18. Gosens, Tom & Rouwendal, Jan, 2018. "Nature-based outdoor recreation trips: Duration, travel mode and location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 513-530.
    19. Tapia, Rodrigo J. & de Jong, Gerard & Larranaga, Ana M. & Bettella Cybis, Helena B., 2020. "Application of MDCEV to infrastructure planning in regional freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 255-271.
    20. Jordan Louviere & Kenneth Train & Moshe Ben-Akiva & Chandra Bhat & David Brownstone & Trudy Cameron & Richard Carson & J. Deshazo & Denzil Fiebig & William Greene & David Hensher & Donald Waldman, 2005. "Recent Progress on Endogeneity in Choice Modeling," Marketing Letters, Springer, vol. 16(3), pages 255-265, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:34:y:2007:i:1:p:67-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.