IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences

  • Bhat, Chandra R.
Registered author(s):

    The use of simulation techniques has been increasing in recent years in the transportation and related fields to accommodate flexible and behaviorally realistic structures for analysis of decision processes. This paper proposes a randomized and scrambled version of the Halton sequence for use in simulation estimation of discrete choice models. The scrambling of the Halton sequence is motivated by the rapid deterioration of the standard Halton sequence's coverage of the integration domain in high dimensions of integration. The randomization of the sequence is motivated from a need to statistically compute the simulation variance of model parameters. The resulting hybrid sequence combines the good coverage property of quasi-Monte Carlo sequences with the ease of estimating simulation error using traditional Monte Carlo methods. The paper develops an evaluation framework for assessing the performance of the traditional pseudo-random sequence, the standard Halton sequence, and the scrambled Halton sequence. The results of computational experiments indicate that the scrambled Halton sequence performs better than the standard Halton sequence and the traditional pseudo-random sequence for simulation estimation of models with high dimensionality of integration.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

    Volume (Year): 37 (2003)
    Issue (Month): 9 (November)
    Pages: 837-855

    in new window

    Handle: RePEc:eee:transb:v:37:y:2003:i:9:p:837-855
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Kenneth Train, . "Simulation Methods for Probit and Related Models Based on Convenient Error Partitioning," Working Papers _009, University of California at Berkeley, Econometrics Laboratory Software Archive.
    2. Tuffin Bruno, 1996. "On the use of low discrepancy sequences in Monte Carlo methods," Monte Carlo Methods and Applications, De Gruyter, vol. 2(4), pages 295-320, December.
    3. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-26, March.
    4. Bhat, Chandra R., 1995. "A heteroscedastic extreme value model of intercity travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 471-483, December.
    5. Vassilis A. Hajivassiliou & Daniel L. McFadden & Paul Ruud, 1993. "Simulation of Multivariate Normal Rectangle Probabilities and their Derivatives: Theoretical and Computational Results," Working Papers _024, Yale University.
    6. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:37:y:2003:i:9:p:837-855. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.