IDEAS home Printed from https://ideas.repec.org/p/xrs/sfbmaa/02-29.html
   My bibliography  Save this paper

Hybrid Choice Models: Progress and Challenges

Author

Listed:
  • Ben-Akiva, Moshe

    (Massachusetts Institute of Technology)

  • McFadden, Daniel

    (University of California at Berkeley)

  • Train, Kenneth

    (University of California at Berkeley)

  • Börsch-Supan, Axel

    (Sonderforschungsbereich 504)

Abstract

We discuss the development of predictive choice models that go beyond the random utility model in its narrowest formulation. Such approaches incorporate several elements of cognitive process that have been identified as important to the choice process, including strong dependence on history and context, perception formation, and latent constraints. A flexible and practical hybrid choice model is presented that integrates many types of discrete choice modeling methods, draws on different types of data, and allows for flexible disturbances and explicit modeling of latent psychological variables, heterogeneity, and latent segmentation. Both progress and challanges related to the development of the hybrid choice model are presented.

Suggested Citation

  • Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
  • Handle: RePEc:xrs:sfbmaa:02-29
    Note: Financial support from the Deutsche Forschungsgemeinschaft, SFB 504, at the University of Mannheim, is gratefully acknowledged.
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Denis Bolduc & Bernard Fortin & Stephen Gordon, 1997. "Multinomial Probit Estimation of Spatially Interdependent Choices: An Empirical Comparison of Two New Techniques," International Regional Science Review, , vol. 20(1-2), pages 77-101, April.
    2. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-843, August.
    3. Daniel McFadden, 2001. "Economic Choices," American Economic Review, American Economic Association, vol. 91(3), pages 351-378, June.
    4. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    5. Bolduc, Denis, 1999. "A practical technique to estimate multinomial probit models in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 63-79, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Czajkowski, Mikołaj & Zagórska, Katarzyna & Letki, Natalia & Tryjanowski, Piotr & Wąs, Adam, 2021. "Drivers of farmers’ willingness to adopt extensive farming practices in a globally important bird area," Land Use Policy, Elsevier, vol. 107(C).
    2. Choi, Andy S., 2013. "Nonmarket values of major resources in the Korean DMZ areas: A test of distance decay," Ecological Economics, Elsevier, vol. 88(C), pages 97-107.
    3. Kesternich, Iris & Heiss, Florian & McFadden, Daniel & Winter, Joachim, 2013. "Suit the action to the word, the word to the action: Hypothetical choices and real decisions in Medicare Part D," Journal of Health Economics, Elsevier, vol. 32(6), pages 1313-1324.
    4. Hong Fu & Yuehua Zhang & Yinuo An & Li Zhou & Yanling Peng & Rong Kong & Calum G. Turvey, 2022. "Subjective and objective risk perceptions and the willingness to pay for agricultural insurance: evidence from an in-the-field choice experiment in rural China," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 47(1), pages 98-121, March.
    5. Marley, A. A. J., 2002. "Random utility models and their applications: recent developments," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 289-302, July.
    6. Ziegler, Andreas, 2001. "Simulated z-tests in multinomial probit models," ZEW Discussion Papers 01-53, ZEW - Leibniz Centre for European Economic Research.
    7. William Greene, 2007. "Discrete Choice Modeling," Working Papers 07-6, New York University, Leonard N. Stern School of Business, Department of Economics.
    8. Schmidheiny, Kurt, 2006. "Income segregation and local progressive taxation: Empirical evidence from Switzerland," Journal of Public Economics, Elsevier, vol. 90(3), pages 429-458, February.
    9. Steffen Andersen & Glenn Harrison & Arne Hole & Morten Lau & E. Rutström, 2012. "Non-linear mixed logit," Theory and Decision, Springer, vol. 73(1), pages 77-96, July.
    10. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    11. Vij, Akshay & Carrel, André & Walker, Joan L., 2013. "Incorporating the influence of latent modal preferences on travel mode choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 164-178.
    12. de Palma, Andre & Kilani, Karim, 2005. "Switching in the logit," Economics Letters, Elsevier, vol. 88(2), pages 196-202, August.
    13. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.
    14. Bolduc, Denis & Khalaf, Lynda & Yélou, Clément, 2010. "Identification robust confidence set methods for inference on parameter ratios with application to discrete choice models," Journal of Econometrics, Elsevier, vol. 157(2), pages 317-327, August.
    15. André Palma & Nathalie Picard & Moshe Ben-Akiva, 2018. "Special issue in the honor of Daniel McFadden: introduction," Theory and Decision, Springer, vol. 84(2), pages 143-148, March.
    16. Daziano, Ricardo A. & Achtnicht, Martin, 2014. "Accounting for uncertainty in willingness to pay for environmental benefits," Energy Economics, Elsevier, vol. 44(C), pages 166-177.
    17. Hu, Wuyang & Adamowicz, Wiktor L. & Veeman, Michele M., 2005. "Bayesian Analysis of Consumer Choices with Taste, Context, Reference Point and Individual Scale Effects," 2005 Annual meeting, July 24-27, Providence, RI 19296, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Revelt, David & Train, Kenneth, 2000. "Customer-Specific Taste Parameters and Mixed Logit: Households' Choice of Electricity Supplier," Department of Economics, Working Paper Series qt1900p96t, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    19. Rungie, Cam M. & Coote, Leonard V. & Louviere, Jordan J., 2012. "Latent variables in discrete choice experiments," Journal of choice modelling, Elsevier, vol. 5(3), pages 145-156.
    20. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).

    More about this item

    JEL classification:

    • Z00 - Other Special Topics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:xrs:sfbmaa:02-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carsten Schmidt (email available below). General contact details of provider: https://edirc.repec.org/data/sfmande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.