IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v5y2007i3p313-331.html
   My bibliography  Save this article

Heterogeneity distributions of willingness-to-pay in choice models

Author

Listed:
  • Garrett Sonnier

    ()

  • Andrew Ainslie

    ()

  • Thomas Otter

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Garrett Sonnier & Andrew Ainslie & Thomas Otter, 2007. "Heterogeneity distributions of willingness-to-pay in choice models," Quantitative Marketing and Economics (QME), Springer, vol. 5(3), pages 313-331, September.
  • Handle: RePEc:kap:qmktec:v:5:y:2007:i:3:p:313-331
    DOI: 10.1007/s11129-007-9024-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11129-007-9024-6
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, December.
    2. Greg Shaffer & Z. John Zhang, 1995. "Competitive Coupon Targeting," Marketing Science, INFORMS, vol. 14(4), pages 395-416.
    3. Erik Meijer & Jan Rouwendal, 2006. "Measuring welfare effects in models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 227-244.
    4. John C. Liechty & Duncan K. H. Fong & Wayne S. DeSarbo, 2005. "Dynamic Models Incorporating Individual Heterogeneity: Utility Evolution in Conjoint Analysis," Marketing Science, INFORMS, vol. 24(2), pages 285-293, November.
    5. Zellner, Arnold, 1978. "Estimation of functions of population means and regression coefficients including structural coefficients : A minimum expected loss (MELO) approach," Journal of Econometrics, Elsevier, vol. 8(2), pages 127-158, October.
    6. Kamel Jedidi & Z. John Zhang, 2002. "Augmenting Conjoint Analysis to Estimate Consumer Reservation Price," Management Science, INFORMS, vol. 48(10), pages 1350-1368, October.
    7. Kamel Jedidi & Sharan Jagpal & Puneet Manchanda, 2003. "Measuring Heterogeneous Reservation Prices for Product Bundles," Marketing Science, INFORMS, vol. 22(1), pages 107-130, July.
    8. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    2. Carson, Richard T. & Czajkowski, Mikołaj, 2019. "A new baseline model for estimating willingness to pay from discrete choice models," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 57-61.
    3. Sobolewski, Maciej & Kopczewski, Tomasz, 2017. "Estimating demand for fixed-line telecommunication bundles," Telecommunications Policy, Elsevier, vol. 41(4), pages 227-241.
    4. Sonnier, Garrett P., 2014. "The market value for product attribute improvements under price personalization," International Journal of Research in Marketing, Elsevier, vol. 31(2), pages 168-177.
    5. Gensler, Sonja & Hinz, Oliver & Skiera, Bernd & Theysohn, Sven, 2012. "Willingness-to-pay estimation with choice-based conjoint analysis: Addressing extreme response behavior with individually adapted designs," European Journal of Operational Research, Elsevier, vol. 219(2), pages 368-378.
    6. Parvaneh Shahnoori & Glenn P. Jenkins, 2019. "Valuation of the Quality Attributes of Online Banking Services by Small and Medium Enterprises Engaged in International Trade," South African Journal of Economics, Economic Society of South Africa, vol. 87(1), pages 65-81, March.
    7. Chan Choi, S., 2017. "Defensive strategy against a private label: Building brand premium for retailer cooperation," Journal of Retailing and Consumer Services, Elsevier, vol. 34(C), pages 335-339.
    8. Dost, Florian & Geiger, Ingmar, 2017. "Value-based pricing in competitive situations with the help of multi-product price response maps," Journal of Business Research, Elsevier, vol. 76(C), pages 219-236.
    9. Andrew J. Epstein & Jonathan D. Ketcham, 2014. "Information technology and agency in physicians' prescribing decisions," RAND Journal of Economics, RAND Corporation, vol. 45(2), pages 422-448, June.
    10. Arne Hole & Julie Kolstad, 2012. "Mixed logit estimation of willingness to pay distributions: a comparison of models in preference and WTP space using data from a health-related choice experiment," Empirical Economics, Springer, vol. 42(2), pages 445-469, April.
    11. Sobolewski, Maciej & Czajkowski, MikoŁaj, 2012. "Network effects and preference heterogeneity in the case of mobile telecommunications markets," Telecommunications Policy, Elsevier, vol. 36(3), pages 197-211.
    12. Ricardo Scarpa & Mara Thiene & Kenneth Train, 2006. "Utility in WTP Space: A Tool to Address Confounding Random Scale Effects in Destination Choice to the Alps," Working Papers in Economics 06/15, University of Waikato.
    13. Federico Pontoni & Daniel Vecchiato & Francesco Marangon & Tiziano Tempesta & Stefania Troiano, 2016. "Choice experiments and environmental taxation: An application to the Italian hydropower sector," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2016(3), pages 99-118.
    14. Eggers, Felix & Sattler, Henrik, 2009. "Hybrid individualized two-level choice-based conjoint (HIT-CBC): A new method for measuring preference structures with many attribute levels," International Journal of Research in Marketing, Elsevier, vol. 26(2), pages 108-118.
    15. Yuanchun Jiang & Jennifer Shang & Chris F. Kemerer & Yezheng Liu, 2011. "Optimizing E-tailer Profits and Customer Savings: Pricing Multistage Customized Online Bundles," Marketing Science, INFORMS, vol. 30(4), pages 737-752, July.
    16. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    17. Liu, Zhaoyang & Hanley, Nick & Campbell, Danny, 2020. "Linking urban air pollution with residents’ willingness to pay for greenspace: A choice experiment study in Beijing," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    18. Brathwaite, Timothy & Walker, Joan L., 2018. "Asymmetric, closed-form, finite-parameter models of multinomial choice," Journal of choice modelling, Elsevier, vol. 29(C), pages 78-112.
    19. Carole Ropars-Collet & Mélody Leplat & Philippe Le Goffe & Marie Lesueur, 2015. "La pêche professionnelle est-elle un facteur d’attractivité récréative sur le littoral ?," Revue économique, Presses de Sciences-Po, vol. 66(4), pages 729-754.
    20. Schleich, Joachim & Faure, Corinne & Guetlein, Marie-Charlotte & Tu, Gengyang, 2019. "Conveyance and the moderating effect of envy on homeowners' choice of appliances," Working Papers "Sustainability and Innovation" S06/2019, Fraunhofer Institute for Systems and Innovation Research (ISI).

    More about this item

    Keywords

    Bayesian analysis; Choice modeling; Willingness-to-pay; C11; M31;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:5:y:2007:i:3:p:313-331. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.