IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v110y2017icp447-460.html
   My bibliography  Save this article

No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets

Author

Listed:
  • Sykes, Maxwell
  • Axsen, Jonn

Abstract

The adoption of zero emission vehicles (ZEVs) is limited by a variety of barriers. Some are region-specific (e.g. availability of charging infrastructure) while others are global in nature (e.g. battery prices) where improvements spill over between regions. This study explores regional spillover effects and GHG impacts of strong ZEV-focused policy, specifically the ZEV mandate in place in ten U.S. states (“ZEV States”) which requires automakers to sell a minimum amount of ZEVs each year. We use a dynamic technology adoption model to simulate passenger vehicle sectors in North America, focusing on the case of one small region (British Columbia, covering 0.7% of the market) as potentially free-riding off of ZEV States’ policy (covering 23% of the market). Results indicate that free-ridership is not effective; even with the ZEV mandate driving very high sales in ZEV States, British Columbia cannot achieve significant ZEV adoption without also implementing its own ZEV mandate. Further, for British Columbia to meet its 2050 GHG targets, it may need a ZEV mandate in addition to complementary climate policies—pushing ZEVs to account for 40–93% of new vehicle sales in 2050. In short, regions seeking low-carbon transportation likely need to implement their own stringent policies.

Suggested Citation

  • Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
  • Handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:447-460
    DOI: 10.1016/j.enpol.2017.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517305347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fouquet, Roger, 2012. "Trends in income and price elasticities of transport demand (1850–2010)," Energy Policy, Elsevier, vol. 50(C), pages 62-71.
    2. Mark Jaccard, 2009. "Combining Top Down and Bottom Up in Energy Economy Models," Chapters, in: Joanne Evans & Lester C. Hunt (ed.), International Handbook on the Economics of Energy, chapter 13, Edward Elgar Publishing.
    3. Weber, K. Matthias & Rohracher, Harald, 2012. "Legitimizing research, technology and innovation policies for transformative change," Research Policy, Elsevier, vol. 41(6), pages 1037-1047.
    4. Chris Bataille & Mark Jaccard & John Nyboer & Nic Rivers, 2006. "Towards General Equilibrium in a Technology-Rich Model with Empirically Estimated Behavioral Parameters," The Energy Journal, , vol. 27(2_suppl), pages 1-20, June.
    5. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
    6. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, January.
    7. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    8. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    9. Carrillo-Hermosilla, Javier, 2006. "A policy approach to the environmental impacts of technological lock-in," Ecological Economics, Elsevier, vol. 58(4), pages 717-742, July.
    10. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    11. van der Vooren & Eric Brouillat, 2013. "Evaluating CO2 reduction policy portfolios in the automotive sector," Innovation Studies Utrecht (ISU) working paper series 13-01, Utrecht University, Department of Innovation Studies, revised Feb 2013.
    12. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    13. Figenbaum, Erik & Assum, Terje & Kolbenstvedt, Marika, 2015. "Electromobility in Norway: Experiences and Opportunities," Research in Transportation Economics, Elsevier, vol. 50(C), pages 29-38.
    14. Sperling, Dan & Collantes, Gustavo O, 2008. "The origin of California’s zero emission vehicle mandate," Institute of Transportation Studies, Working Paper Series qt9pd8m8gs, Institute of Transportation Studies, UC Davis.
    15. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    16. Allcott, Hunt & Mullainathan, Sendhil & Taubinsky, Dmitry, 2014. "Energy policy with externalities and internalities," Journal of Public Economics, Elsevier, vol. 112(C), pages 72-88.
    17. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    18. Matthews, Lindsay & Lynes, Jennifer & Riemer, Manuel & Del Matto, Tania & Cloet, Nicholas, 2017. "Do we have a car for you? Encouraging the uptake of electric vehicles at point of sale," Energy Policy, Elsevier, vol. 100(C), pages 79-88.
    19. Jeroen Struben & John D Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Environment and Planning B, , vol. 35(6), pages 1070-1097, December.
    20. Musti, Sashank & Kockelman, Kara M., 2011. "Evolution of the household vehicle fleet: Anticipating fleet composition, PHEV adoption and GHG emissions in Austin, Texas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 707-720, October.
    21. Greenblatt, Jeffery B., 2015. "Modeling California policy impacts on greenhouse gas emissions," Energy Policy, Elsevier, vol. 78(C), pages 158-172.
    22. Offer, G.J. & Howey, D. & Contestabile, M. & Clague, R. & Brandon, N.P., 2010. "Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system," Energy Policy, Elsevier, vol. 38(1), pages 24-29, January.
    23. Kyle, Page & Kim, Son H., 2011. "Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands," Energy Policy, Elsevier, vol. 39(5), pages 3012-3024, May.
    24. Nic Rivers & Mark Jaccard, 2005. "Combining Top-Down and Bottom-Up Approaches to Energy-Economy Modeling Using Discrete Choice Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 83-106.
    25. Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
    26. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data. Part I: Model structure and validation," Working Papers "Sustainability and Innovation" S4/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    27. Schoots, K. & Kramer, G.J. & van der Zwaan, B.C.C., 2010. "Technology learning for fuel cells: An assessment of past and potential cost reductions," Energy Policy, Elsevier, vol. 38(6), pages 2887-2897, June.
    28. Rhodes, Ekaterina & Axsen, Jonn & Jaccard, Mark, 2017. "Exploring Citizen Support for Different Types of Climate Policy," Ecological Economics, Elsevier, vol. 137(C), pages 56-69.
    29. Dagsvik, John K. & Wennemo, Tom & Wetterwald, Dag G. & Aaberge, Rolf, 2002. "Potential demand for alternative fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 361-384, May.
    30. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    31. Joanne Evans & Lester C. Hunt (ed.), 2009. "International Handbook on the Economics of Energy," Books, Edward Elgar Publishing, number 12764.
    32. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    33. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    34. Bhat, Chandra R. & Sen, Sudeshna & Eluru, Naveen, 2009. "The impact of demographics, built environment attributes, vehicle characteristics, and gasoline prices on household vehicle holdings and use," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 1-18, January.
    35. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    36. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
    37. Small, Kenneth A., 2012. "Energy policies for passenger motor vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 874-889.
    38. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    39. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    40. Melton, Noel & Axsen, Jonn & Goldberg, Suzanne, 2017. "Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the “PEV policy report card”," Energy Policy, Elsevier, vol. 107(C), pages 381-393.
    41. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
    42. Yang, Christopher & Yeh, Sonia & Zakerinia, Saleh & Ramea, Kalai & McCollum, David, 2015. "Achieving California's 80% greenhouse gas reduction target in 2050: Technology, policy and scenario analysis using CA-TIMES energy economic systems model," Energy Policy, Elsevier, vol. 77(C), pages 118-130.
    43. Collantes, Gustavo & Sperling, Daniel, 2008. "The origin of California's zero emission vehicle mandate," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1302-1313, December.
    44. Fox, Jacob & Axsen, Jonn & Jaccard, Mark, 2017. "Picking Winners: Modelling the Costs of Technology-specific Climate Policy in the U.S. Passenger Vehicle Sector," Ecological Economics, Elsevier, vol. 137(C), pages 133-147.
    45. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data — Part I: Model structure and validation," Ecological Economics, Elsevier, vol. 107(C), pages 411-421.
    46. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data: German market and policy options," Working Papers "Sustainability and Innovation" S12/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    47. Noel Melton & Jonn Axsen & Daniel Sperling, 2016. "Moving beyond alternative fuel hype to decarbonize transportation," Nature Energy, Nature, vol. 1(3), pages 1-10, March.
    48. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    49. Marshall, Brandon M. & Kelly, Jarod C. & Lee, Tae-Kyung & Keoleian, Gregory A. & Filipi, Zoran, 2013. "Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study," Energy Policy, Elsevier, vol. 58(C), pages 358-370.
    50. Vergis, Sydney & Turrentine, Thomas S. & Fulton, Lewis & Fulton, Elizabeth, 2014. "Plug-In Electric Vehicles: A Case Study of Seven Markets," Institute of Transportation Studies, Working Paper Series qt5ps3z0f5, Institute of Transportation Studies, UC Davis.
    51. Mau, Paulus & Eyzaguirre, Jimena & Jaccard, Mark & Collins-Dodd, Colleen & Tiedemann, Kenneth, 2008. "The 'neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies," Ecological Economics, Elsevier, vol. 68(1-2), pages 504-516, December.
    52. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    53. Ozaki, Ritsuko & Sevastyanova, Katerina, 2011. "Going hybrid: An analysis of consumer purchase motivations," Energy Policy, Elsevier, vol. 39(5), pages 2217-2227, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xi & Xiong, Zhen & Li, Xingong & Xiong, Yongqing, 2024. "How do nonsubsidized incentive affect enterprises' innovation choices? A case from the new energy vehicle industry in China," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    2. Fritz, Markus & Plötz, Patrick & Funke, Simon A., 2019. "The impact of ambitious fuel economy standards on the market uptake of electric vehicles and specific CO2 emissions," Energy Policy, Elsevier, vol. 135(C).
    3. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    4. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2021. "Exempting battery electric vehicles from traffic restrictions: Impacts on market and environment under Pigovian taxation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 53-91.
    5. Rhodes, Ekaterina & Scott, William A. & Jaccard, Mark, 2021. "Designing flexible regulations to mitigate climate change: A cross-country comparative policy analysis," Energy Policy, Elsevier, vol. 156(C).
    6. Haidar, Bassem & Aguilar Rojas, Maria Teresa, 2022. "The relationship between public charging infrastructure deployment and other socio-economic factors and electric vehicle adoption in France," Research in Transportation Economics, Elsevier, vol. 95(C).
    7. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "Which “second-best” climate policies are best? Simulating cost-effective policy mixes for passenger vehicles," Resource and Energy Economics, Elsevier, vol. 70(C).
    8. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "How to design a zero-emissions vehicle mandate? Simulating impacts on sales, GHG emissions and cost-effectiveness using the AUtomaker-Consumer Model (AUM)," Transport Policy, Elsevier, vol. 117(C), pages 152-168.
    9. Münzel, Christiane & Plötz, Patrick & Sprei, Frances & Gnann, Till, 2019. "How large is the effect of financial incentives on electric vehicle sales? – A global review and European analysis," Energy Economics, Elsevier, vol. 84(C).
    10. Long, Zoe & Axsen, Jonn & Kitt, Shelby, 2020. "Public support for supply-focused transport policies: Vehicle emissions, low-carbon fuels, and ZEV sales standards in Canada and California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 98-115.
    11. Jun Li & Bin Yang & Mingke He, 2023. "Capabilities Analysis of Electricity Energy Conservation and Carbon Emissions Reduction in Multi-Level Battery Electric Passenger Vehicle in China," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    12. Anna Kiziltan & Mustafa Kiziltan & Shihomi Ara Aksoy & Merih Aydınalp Köksal & Ş. Elçin Tekeli & Nilhan Duran & S. Yeşer Aslanoğlu & Fatma Öztürk & Nazan Özyürek & Pervin Doğan & Ağça Gül Yılmaz & Can, 2023. "Cost–benefit analysis of road-transport policy options to combat air pollution in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10765-10798, October.
    13. Yang, Jue & Chen, Fei, 2020. "How psychological factors related to consumer preferences on plug-in electric passenger vehicles in Chinese cities?A comparison of cities with and without restrictions," MPRA Paper 96165, University Library of Munich, Germany.
    14. Haider, Minza & Davis, Matthew & Kumar, Amit, 2024. "Development of a framework to assess the greenhouse gas mitigation potential from the adoption of low-carbon road vehicles in a hydrocarbon-rich region," Applied Energy, Elsevier, vol. 358(C).
    15. Yang, J. & Chen, F., 2021. "How are social-psychological factors related to consumer preferences for plug-in electric vehicles? Case studies from two cities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    17. Choi, Hyunhong & Koo, Yoonmo, 2023. "New technology product introduction strategy with considerations for consumer-targeted policy intervention and new market entrant," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    18. Kitt, Shelby & Axsen, Jonn & Long, Zoe & Rhodes, Ekaterina, 2021. "The role of trust in citizen acceptance of climate policy: Comparing perceptions of government competence, integrity and value similarity," Ecological Economics, Elsevier, vol. 183(C).
    19. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Dynamic analysis and investigation of the thermal transient effects in a CSTR reactor producing biogas," Energy, Elsevier, vol. 263(PE).
    20. Mengnan Li & Haiyi Ye & Xiawei Liao & Junping Ji & Xiaoming Ma, 2020. "How Shenzhen, China pioneered the widespread adoption of electric vehicles in a major city: Implications for global implementation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(4), July.
    21. Kangda Chen & Fuquan Zhao & Han Hao & Zongwei Liu & Xinglong Liu, 2021. "Hierarchical Optimization Decision-Making Method to Comply with China’s Fuel Consumption and New Energy Vehicle Credit Regulations," Sustainability, MDPI, vol. 13(14), pages 1-25, July.
    22. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    23. Nagasawa, Kazunori & Davidson, F. Todd & Lloyd, Alan C. & Webber, Michael E., 2019. "Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles," Applied Energy, Elsevier, vol. 235(C), pages 1001-1016.
    24. Hammond, William & Axsen, Jonn & Kjeang, Erik, 2020. "How to slash greenhouse gas emissions in the freight sector: Policy insights from a technology-adoption model of Canada," Energy Policy, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fox, Jacob & Axsen, Jonn & Jaccard, Mark, 2017. "Picking Winners: Modelling the Costs of Technology-specific Climate Policy in the U.S. Passenger Vehicle Sector," Ecological Economics, Elsevier, vol. 137(C), pages 133-147.
    2. Melton, Noel & Axsen, Jonn & Goldberg, Suzanne, 2017. "Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the “PEV policy report card”," Energy Policy, Elsevier, vol. 107(C), pages 381-393.
    3. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    4. Oliveira, Gabriela D. & Roth, Richard & Dias, Luis C., 2019. "Diffusion of alternative fuel vehicles considering dynamic preferences," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 83-99.
    5. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "Which “second-best” climate policies are best? Simulating cost-effective policy mixes for passenger vehicles," Resource and Energy Economics, Elsevier, vol. 70(C).
    6. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    7. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
    8. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    9. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    10. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    11. Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    12. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "How to design a zero-emissions vehicle mandate? Simulating impacts on sales, GHG emissions and cost-effectiveness using the AUtomaker-Consumer Model (AUM)," Transport Policy, Elsevier, vol. 117(C), pages 152-168.
    13. Helveston, John Paul & Liu, Yimin & Feit, Elea McDonnell & Fuchs, Erica & Klampfl, Erica & Michalek, Jeremy J., 2015. "Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 96-112.
    14. Takanori Ida & Kayo Murakami & Makoto Tanaka, 2012. "Keys to Smart Home Diffusion: A Stated Preference Analysis of Smart Meters, Photovoltaic Generation, and Electric/Hybrid Vehicles," Discussion papers e-11-011, Graduate School of Economics Project Center, Kyoto University.
    15. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    16. Alexandros Dimitropoulos & Piet Rietveld & Jos N. van Ommeren, 2011. "Consumer Valuation of Driving Range: A Meta-Analysis," Tinbergen Institute Discussion Papers 11-133/3, Tinbergen Institute.
    17. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    18. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    19. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    20. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:447-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.