IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p2618-2628.html
   My bibliography  Save this article

Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance

Author

Listed:
  • von Wirth, Timo
  • Gislason, Linda
  • Seidl, Roman

Abstract

Distributed energy systems (DESs) on a local scale constitute a promising niche to leverage the provision of renewable energy. DESs such as micro-cogeneration and multi-energy hubs integrate renewable energy sources, small-scale combined heat/power production, various energy storage methods, and active demand-side management. Research on adopting these systems within existing neighborhood contexts remains scarce, however, particularly on the role of local actors such as local energy utilities, ownership, and the spatial scale of implementation for accelerating the adoption of DESs. In this study, we conducted a systematic review of the relevant scientific literature on the adoption and social acceptance of DESs, followed by a series of semi-structured interviews with representatives of DES pilot implementations. Our findings indicate that local co-ownership and awareness of local benefits tend to improve the acceptance of distributed energy infrastructures. The study found that established energy actors such as energy utilities and grid operators currently test DESs on a local scale in terms of the systems' technical and financial feasibilities. The study also identified major regulatory and structural barriers to DES market adoption that must be overcome to accelerate the current rate of niche development; the study thus contributes to developing DES adoption strategies. We provide future research trajectories that would address the role of spatial proximity and deployment models to attain a more dynamic understanding of the social acceptance of new energy technologies.

Suggested Citation

  • von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2618-2628
    DOI: 10.1016/j.rser.2017.09.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117313412
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, N. & Ashworth, P. & Devine-Wright, P., 2013. "Societal acceptance of wind farms: Analysis of four common themes across Australian case studies," Energy Policy, Elsevier, vol. 58(C), pages 200-208.
    2. Boon, Frank Pieter & Dieperink, Carel, 2014. "Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development," Energy Policy, Elsevier, vol. 69(C), pages 297-307.
    3. Pellizzone, Anna & Allansdottir, Agnes & De Franco, Roberto & Muttoni, Giovanni & Manzella, Adele, 2015. "Exploring public engagement with geothermal energy in southern Italy: A case study," Energy Policy, Elsevier, vol. 85(C), pages 1-11.
    4. Neves, Diana & Silva, Carlos A. & Connors, Stephen, 2014. "Design and implementation of hybrid renewable energy systems on micro-communities: A review on case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 935-946.
    5. Kästel, Peter & Gilroy-Scott, Bryce, 2015. "Economics of pooling small local electricity prosumers—LCOE & self-consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 718-729.
    6. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    7. Allen, S.R. & Hammond, G.P. & McManus, M.C., 2008. "Prospects for and barriers to domestic micro-generation: A United Kingdom perspective," Applied Energy, Elsevier, vol. 85(6), pages 528-544, June.
    8. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    9. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    10. Orehounig, Kristina & Evins, Ralph & Dorer, Viktor, 2015. "Integration of decentralized energy systems in neighbourhoods using the energy hub approach," Applied Energy, Elsevier, vol. 154(C), pages 277-289.
    11. Huijts, Nicole M.A. & Midden, Cees J.H. & Meijnders, Anneloes L., 2007. "Social acceptance of carbon dioxide storage," Energy Policy, Elsevier, vol. 35(5), pages 2780-2789, May.
    12. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    13. Schweizer-Ries, Petra, 2008. "Energy sustainable communities: Environmental psychological investigations," Energy Policy, Elsevier, vol. 36(11), pages 4126-4135, November.
    14. Verbong, Geert & Geels, Frank, 2007. "The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960-2004)," Energy Policy, Elsevier, vol. 35(2), pages 1025-1037, February.
    15. Devine-Wright, Patrick & Batel, Susana & Aas, Oystein & Sovacool, Benjamin & Labelle, Michael Carnegie & Ruud, Audun, 2017. "A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage," Energy Policy, Elsevier, vol. 107(C), pages 27-31.
    16. Alberg Østergaard, Poul, 2003. "Transmission-grid requirements with scattered and fluctuating renewable electricity-sources," Applied Energy, Elsevier, vol. 76(1-3), pages 247-255, September.
    17. Walker, Gordon, 2008. "What are the barriers and incentives for community-owned means of energy production and use?," Energy Policy, Elsevier, vol. 36(12), pages 4401-4405, December.
    18. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    19. Müller, Matthias Otto & Stämpfli, Adrian & Dold, Ursula & Hammer, Thomas, 2011. "Energy autarky: A conceptual framework for sustainable regional development," Energy Policy, Elsevier, vol. 39(10), pages 5800-5810, October.
    20. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    21. Sauter, Raphael & Watson, Jim, 2007. "Strategies for the deployment of micro-generation: Implications for social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2770-2779, May.
    22. Broman Toft, Madeleine & Schuitema, Geertje & Thøgersen, John, 2014. "Responsible technology acceptance: Model development and application to consumer acceptance of Smart Grid technology," Applied Energy, Elsevier, vol. 134(C), pages 392-400.
    23. Sovacool, Benjamin K. & Lakshmi Ratan, Pushkala, 2012. "Conceptualizing the acceptance of wind and solar electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5268-5279.
    24. Tabi, Andrea & Wüstenhagen, Rolf, 2017. "Keep it local and fish-friendly: Social acceptance of hydropower projects in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 763-773.
    25. Lienert, Pascal & Suetterlin, Bernadette & Siegrist, Michael, 2015. "Public acceptance of the expansion and modification of high-voltage power lines in the context of the energy transition," Energy Policy, Elsevier, vol. 87(C), pages 573-583.
    26. Faber, Albert & Valente, Marco & Janssen, Peter, 2010. "Exploring domestic micro-cogeneration in the Netherlands: An agent-based demand model for technology diffusion," Energy Policy, Elsevier, vol. 38(6), pages 2763-2775, June.
    27. Walker, Gordon & Devine-Wright, Patrick & Hunter, Sue & High, Helen & Evans, Bob, 2010. "Trust and community: Exploring the meanings, contexts and dynamics of community renewable energy," Energy Policy, Elsevier, vol. 38(6), pages 2655-2663, June.
    28. Rong, Aiying & Lahdelma, Risto, 2016. "Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 363-372.
    29. Wolsink, Maarten, 2007. "Planning of renewables schemes: Deliberative and fair decision-making on landscape issues instead of reproachful accusations of non-cooperation," Energy Policy, Elsevier, vol. 35(5), pages 2692-2704, May.
    30. Dowd, Anne-Maree & Boughen, Naomi & Ashworth, Peta & Carr-Cornish, Simone, 2011. "Geothermal technology in Australia: Investigating social acceptance," Energy Policy, Elsevier, vol. 39(10), pages 6301-6307, October.
    31. Perlaviciute, Goda & Steg, Linda, 2014. "Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 361-381.
    32. Musall, Fabian David & Kuik, Onno, 2011. "Local acceptance of renewable energy--A case study from southeast Germany," Energy Policy, Elsevier, vol. 39(6), pages 3252-3260, June.
    33. Chmutina, Ksenia & Goodier, Chris I., 2014. "Alternative future energy pathways: Assessment of the potential of innovative decentralised energy systems in the UK," Energy Policy, Elsevier, vol. 66(C), pages 62-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albana Kona & Paolo Bertoldi & Şiir Kılkış, 2019. "Covenant of Mayors: Local Energy Generation, Methodology, Policies and Good Practice Examples," Energies, MDPI, Open Access Journal, vol. 12(6), pages 1-29, March.
    2. Tuomo Joensuu & Markku Norvasuo & Harry Edelman, 2019. "Stakeholders’ Interests in Developing an Energy Ecosystem for the Superblock—Case Hiedanranta," Sustainability, MDPI, Open Access Journal, vol. 12(1), pages 1-19, December.
    3. Jing Huang & John Boland, 2018. "Performance Analysis for One-Step-Ahead Forecasting of Hybrid Solar and Wind Energy on Short Time Scales," Energies, MDPI, Open Access Journal, vol. 11(5), pages 1-12, May.
    4. Rae, Callum & Kerr, Sandy & Maroto-Valer, M. Mercedes, 2020. "Upscaling smart local energy systems: A review of technical barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Fangyuan Zhao & Xin Guo & Wai Kin (Victor) Chan, 2020. "Individual Green Certificates on Blockchain: A Simulation Approach," Sustainability, MDPI, Open Access Journal, vol. 12(9), pages 1-32, May.
    6. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    7. Viktor Bukovszki & Ábel Magyari & Marina Kristina Braun & Kitti Párdi & András Reith, 2020. "Energy Modelling as a Trigger for Energy Communities: A Joint Socio-Technical Perspective," Energies, MDPI, Open Access Journal, vol. 13(9), pages 1-44, May.
    8. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, Open Access Journal, vol. 12(6), pages 1-47, March.
    9. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    10. Esther Hoffmann & Franziska Mohaupt, 2020. "Joint Storage: A Mixed-Method Analysis of Consumer Perspectives on Community Energy Storage in Germany," Energies, MDPI, Open Access Journal, vol. 13(11), pages 1-22, June.
    11. Wang, Jiangjiang & Lu, Zherui & Li, Meng & Lior, Noam & Li, Weihua, 2019. "Energy, exergy, exergoeconomic and environmental (4E) analysis of a distributed generation solar-assisted CCHP (combined cooling, heating and power) gas turbine system," Energy, Elsevier, vol. 175(C), pages 1246-1258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2618-2628. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.