IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i6p2763-2775.html
   My bibliography  Save this article

Exploring domestic micro-cogeneration in the Netherlands: An agent-based demand model for technology diffusion

Author

Listed:
  • Faber, Albert
  • Valente, Marco
  • Janssen, Peter

Abstract

Micro-cogeneration (micro-CHP) is a new technology at the household level, producing electricity in cogeneration with domestic heating, thereby increasing the overall efficiency of domestic energy production. We have developed a prototypical agent-based simulation model for energy technologies competing for demand at the consumer level. The model is specifically geared towards the competition between micro-CHP and incumbent condensing boilers. In the model, both technologies compete on purchase price and costs of usage, to which various (types of) consumers decide on the installation of either technology. Simulations with various gas and electricity prices show that micro-CHP diffusion could be seriously inhibited if demand for natural gas decreases, e.g. due to insulation measures. Further simulations explore various subsidy schemes. A subsidy for purchase is only found to be effective within a limited range of [euro]1400-3250. A subsidy based on decreasing price difference between the competing technologies is much more cost effective than fixed purchase subsidies. Simulations of a subsidy scheme for usage show that a fast market penetration can be reached, but this does not yet take full advantage of technological progress in terms of decreasing CO2 emissions. Selection of the most effective scheme thus depends on the policy criteria assumed.

Suggested Citation

  • Faber, Albert & Valente, Marco & Janssen, Peter, 2010. "Exploring domestic micro-cogeneration in the Netherlands: An agent-based demand model for technology diffusion," Energy Policy, Elsevier, vol. 38(6), pages 2763-2775, June.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:6:p:2763-2775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00014-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    2. Pan, Haoran & Kohler, Jonathan, 2007. "Technological change in energy systems: Learning curves, logistic curves and input-output coefficients," Ecological Economics, Elsevier, vol. 63(4), pages 749-758, September.
    3. Sauter, Raphael & Watson, Jim, 2007. "Strategies for the deployment of micro-generation: Implications for social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2770-2779, May.
    4. Marco Valente, 2008. "Laboratory for Simulation Develpment - LSD," LEM Papers Series 2008/12, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    5. Dennis E. Smallwood & John Conlisk, 1979. "Product Quality in Markets Where Consumers are Imperfectly Informed," The Quarterly Journal of Economics, Oxford University Press, vol. 93(1), pages 1-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Pasimeni, 2017. "Adoption and Diffusion of Micro-Grids in Italy. An Analysis of Regional Factors Using Agent-Based Modelling," SPRU Working Paper Series 2017-09, SPRU - Science Policy Research Unit, University of Sussex Business School.
    2. Francesco Pasimeni & Tommaso Ciarli, 2018. "Diffusion of Shared Goods in Consumer Coalitions. An Agent-Based Model," SPRU Working Paper Series 2018-24, SPRU - Science Policy Research Unit, University of Sussex Business School.
    3. Johannes Dahlke & Kristina Bogner & Matthias Mueller & Thomas Berger & Andreas Pyka & Bernd Ebersberger, 2020. "Is the Juice Worth the Squeeze? Machine Learning (ML) In and For Agent-Based Modelling (ABM)," Papers 2003.11985, arXiv.org.
    4. Philipp Kircher & Andrew Postlewaite, 2008. "Strategic Firms and Endogenous Consumer Emulation," The Quarterly Journal of Economics, Oxford University Press, vol. 123(2), pages 621-661.
    5. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
    6. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).
    7. Juan Manuel Larrosa, 2016. "Agentes computacionales y análisis económico," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 18(34), pages 87-113, January-J.
    8. Sarah Wolf & Steffen Fürst & Antoine Mandel & Wiebke Lass & Daniel Lincke & Federico Pablo-Marti & Carlo Jaeger, 2013. "A multi-agent model of several economic regions," PSE - Labex "OSE-Ouvrir la Science Economique" halshs-00825217, HAL.
    9. LeBaron Blake & Winker Peter, 2008. "Introduction to the Special Issue on Agent-Based Models for Economic Policy Advice," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 141-148, April.
    10. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    11. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    12. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    13. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Azmat, Saad & Jalil, Muhammad Naiman & Skully, Michael & Brown, Kym, 2016. "Investor’s choice of Shariah compliant ‘replicas’ and original Islamic instruments," Journal of Economic Behavior & Organization, Elsevier, vol. 132(S), pages 4-22.
    15. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    16. Nadia Fiorino & Emma Galli & Ilde Rizzo & Marco Valente, 2018. "Public Procurement and Reputation: An Agent-Based Model," LEM Papers Series 2018/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    17. Gianluca Capone & Franco Malerba & Richard R. Nelson & Luigi Orsenigo & Sidney G. Winter, 2019. "History friendly models: retrospective and future perspectives," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(1), pages 1-23, March.
    18. Andrew Caplin & John Leahy & Filip Matějka, 2015. "Social Learning and Selective Attention," NBER Working Papers 21001, National Bureau of Economic Research, Inc.
    19. Wagner Sousa de Oliveira & Antonio Jorge Fernandes, 2012. "Optimization Model for Economic Evaluation of Wind Farms - How to Optimize a Wind Energy Project Economically and Technically," International Journal of Energy Economics and Policy, Econjournals, vol. 2(1), pages 10-20.
    20. André Lorentz & Tommaso Ciarli & Maria Savona & Marco Valente, 2016. "The effect of demand-driven structural transformations on growth and technological change," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 219-246, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:6:p:2763-2775. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.