IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v38y2010i6p2763-2775.html
   My bibliography  Save this item

Exploring domestic micro-cogeneration in the Netherlands: An agent-based demand model for technology diffusion

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Cantono, Simona, 2012. "Unveiling diffusion dynamics: an autocatalytic percolation model of environmental innovation diffusion and the optimal dynamic path of adoption subsidies," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201222, University of Turin.
  2. Meihan He & Jongsu Lee, 2020. "Social culture and innovation diffusion: a theoretically founded agent-based model," Journal of Evolutionary Economics, Springer, vol. 30(4), pages 1109-1149, September.
  3. Nadia Fiorino & Emma Galli & Ilde Rizzo & Marco Valente, 2023. "Public procurement and reputation. An agent‐based model," Metroeconomica, Wiley Blackwell, vol. 74(4), pages 806-832, November.
  4. Kwon, Seokbeom & Motohashi, Kazuyuki, 2017. "How institutional arrangements in the National Innovation System affect industrial competitiveness: A study of Japan and the U.S. with multiagent simulation," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 221-235.
  5. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
  6. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
  7. KWON Seokbeom & MOTOHASHI Kazuyuki, 2015. "How Institutional Arrangements in the National Innovation System Affect Industrial Competitiveness: A study of Japan and the United States with multiagent simulation," Discussion papers 15065, Research Institute of Economy, Trade and Industry (RIETI).
  8. Hesselink, Laurens X.W. & Chappin, Emile J.L., 2019. "Adoption of energy efficient technologies by households – Barriers, policies and agent-based modelling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 29-41.
  9. Chung, Mo & Park, Chuhwan & Lee, Sukgyu & Park, Hwa-Choon & Im, Yong-Hoon & Chang, Youngho, 2012. "A decision support assessment of cogeneration plant for a community energy system in Korea," Energy Policy, Elsevier, vol. 47(C), pages 365-383.
  10. Lee, Timothy & Yao, Runming, 2013. "Incorporating technology buying behaviour into UK-based long term domestic stock energy models to provide improved policy analysis," Energy Policy, Elsevier, vol. 52(C), pages 363-372.
  11. Lopolito, A. & Morone, P. & Taylor, R., 2013. "Emerging innovation niches: An agent based model," Research Policy, Elsevier, vol. 42(6), pages 1225-1238.
  12. Ruiqiu Yao & Yukun Hu & Liz Varga, 2023. "Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review," Energies, MDPI, vol. 16(5), pages 1-36, March.
  13. Paola D’Orazio & Marco Valente, 2018. "Do Financial Constraints Hamper Environmental Innovation Diffusion? An Agent-Based Approach," SPRU Working Paper Series 2018-10, SPRU - Science Policy Research Unit, University of Sussex Business School.
  14. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
  15. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
  16. Hidayatno, Akhmad & Jafino, Bramka Arga & Setiawan, Andri D. & Purwanto, Widodo Wahyu, 2020. "When and why does transition fail? A model-based identification of adoption barriers and policy vulnerabilities for transition to natural gas vehicles," Energy Policy, Elsevier, vol. 138(C).
  17. Francesco Pasimeni & Tommaso Ciarli, 2018. "Diffusion of Shared Goods in Consumer Coalitions. An Agent-Based Model," SPRU Working Paper Series 2018-24, SPRU - Science Policy Research Unit, University of Sussex Business School.
  18. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
  19. Francesco Pasimeni, 2017. "Adoption and Diffusion of Micro-Grids in Italy. An Analysis of Regional Factors Using Agent-Based Modelling," SPRU Working Paper Series 2017-09, SPRU - Science Policy Research Unit, University of Sussex Business School.
  20. Zhang, Tao & Siebers, Peer-Olaf & Aickelin, Uwe, 2012. "A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK," Energy Policy, Elsevier, vol. 47(C), pages 102-110.
  21. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
  22. Bodo, Peter, 2016. "MADness in the method: On the volatility and irregularity of technology diffusion," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 2-11.
  23. Bernardo Alves Furtado & Gustavo Onofre Andre~ao, 2022. "Machine Learning Simulates Agent-Based Model Towards Policy," Papers 2203.02576, arXiv.org, revised Nov 2022.
  24. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2022. "An agent-based exploration of the effect of multi-criteria decisions on complex socio-technical heat transitions," Applied Energy, Elsevier, vol. 306(PB).
  25. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
  26. Bichraoui-Draper, Najet & Xu, Ming & Miller, Shelie A. & Guillaume, Bertrand, 2015. "Agent-based life cycle assessment for switchgrass-based bioenergy systems," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 171-178.
  27. Arias-Gaviria, Jessica & Carvajal-Quintero, Sandra Ximena & Arango-Aramburo, Santiago, 2019. "Understanding dynamics and policy for renewable energy diffusion in Colombia," Renewable Energy, Elsevier, vol. 139(C), pages 1111-1119.
  28. Evangelos Panos & Stavroula Margelou, 2019. "Long-Term Solar Photovoltaics Penetration in Single- and Two-Family Houses in Switzerland," Energies, MDPI, vol. 12(13), pages 1-33, June.
  29. Lee, Timothy & Yao, Runming & Coker, Phil, 2014. "An analysis of UK policies for domestic energy reduction using an agent based tool," Energy Policy, Elsevier, vol. 66(C), pages 267-279.
  30. van Rijnsoever, Frank J., 2020. "Meeting, mating, and intermediating: How incubators can overcome weak network problems in entrepreneurial ecosystems," Research Policy, Elsevier, vol. 49(1).
  31. Hossein Sabzian & Mohammad Ali Shafia & Mehdi Ghazanfari & Ali Bonyadi Naeini, 2020. "Modeling the Adoption and Diffusion of Mobile Telecommunications Technologies in Iran: A Computational Approach Based on Agent-Based Modeling and Social Network Theory," Sustainability, MDPI, vol. 12(7), pages 1-36, April.
  32. Sorda, G. & Sunak, Y. & Madlener, R., 2013. "An agent-based spatial simulation to evaluate the promotion of electricity from agricultural biogas plants in Germany," Ecological Economics, Elsevier, vol. 89(C), pages 43-60.
  33. Wolf, Ingo & Schröder, Tobias & Neumann, Jochen & de Haan, Gerhard, 2015. "Changing minds about electric cars: An empirically grounded agent-based modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 269-285.
  34. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2021. "The effect of group decisions in heat transitions: An agent-based approach," Energy Policy, Elsevier, vol. 156(C).
  35. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
  36. Arfaoui, Nabila & Brouillat, Eric & Saint Jean, Maïder, 2014. "Policy design and technological substitution: Investigating the REACH regulation in an agent-based model," Ecological Economics, Elsevier, vol. 107(C), pages 347-365.
  37. Arias-Gaviria, Jessica & Larsen, Erik R. & Arango-Aramburo, Santiago, 2018. "Understanding the future of Seawater Air Conditioning in the Caribbean: A simulation approach," Utilities Policy, Elsevier, vol. 53(C), pages 73-83.
  38. Francesco Pasimeni, 2019. "Community-Based Adoption and Diffusion of Micro-Grids: Analysis of the Italian Case with Agent-Based Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(1), pages 1-11.
  39. Busch, Jonathan & Roelich, Katy & Bale, Catherine S.E. & Knoeri, Christof, 2017. "Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks," Energy Policy, Elsevier, vol. 100(C), pages 170-180.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.