IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v52y2013icp363-372.html
   My bibliography  Save this article

Incorporating technology buying behaviour into UK-based long term domestic stock energy models to provide improved policy analysis

Author

Listed:
  • Lee, Timothy
  • Yao, Runming

Abstract

The UK has a target for an 80% reduction in CO2 emissions by 2050 from a 1990 base. Domestic energy use accounts for around 30% of total emissions. This paper presents a comprehensive review of existing models and modelling techniques and indicates how they might be improved by considering individual buying behaviour. Macro (top-down) and micro (bottom-up) models have been reviewed and analysed. It is found that bottom-up models can project technology diffusion due to their higher resolution. The weakness of existing bottom-up models at capturing individual green technology buying behaviour has been identified. Consequently, Markov chains, neural networks and agent-based modelling are proposed as possible methods to incorporate buying behaviour within a domestic energy forecast model. Among the three methods, agent-based models are found to be the most promising, although a successful agent approach requires large amounts of input data. A prototype agent-based model has been developed and tested, which demonstrates the feasibility of an agent approach. This model shows that an agent-based approach is promising as a means to predict the effectiveness of various policy measures.

Suggested Citation

  • Lee, Timothy & Yao, Runming, 2013. "Incorporating technology buying behaviour into UK-based long term domestic stock energy models to provide improved policy analysis," Energy Policy, Elsevier, vol. 52(C), pages 363-372.
  • Handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:363-372
    DOI: 10.1016/j.enpol.2012.09.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512008233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.09.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Georgopoulou, E. & Sarafidis, Y. & Mirasgedis, S. & Balaras, C.A. & Gaglia, A. & Lalas, D.P., 2006. "Evaluating the need for economic support policies in promoting greenhouse gas emission reduction measures in the building sector: The case of Greece," Energy Policy, Elsevier, vol. 34(15), pages 2012-2031, October.
    2. Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
    3. John FitzGerald & Jonathan Hore & Ide Kearney, 2002. "A Model for Forecasting Energy Demand and Greenhouse Gas Emissions in Ireland," Papers WP146, Economic and Social Research Institute (ESRI).
    4. Streimikiene, Dalia & Volochovic, Andzej, 2011. "The impact of household behavioral changes on GHG emission reduction in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4118-4124.
    5. Natarajan, Sukumar & Levermore, Geoffrey J., 2007. "Predicting future UK housing stock and carbon emissions," Energy Policy, Elsevier, vol. 35(11), pages 5719-5727, November.
    6. Schelling, Thomas C, 1969. "Models of Segregation," American Economic Review, American Economic Association, vol. 59(2), pages 488-493, May.
    7. Shorrock, LD & Dunster, JE, 1997. "The physically-based model BREHOMES and its use in deriving scenarios for the energy use and carbon dioxide emissions of the UK housing stock," Energy Policy, Elsevier, vol. 25(12), pages 1027-1037, October.
    8. Ruud Kempener, 2009. "Simulating Personal Carbon Trading: An Agent-Based Model," SPRU Working Paper Series 177, SPRU - Science Policy Research Unit, University of Sussex Business School.
    9. Faber, Albert & Valente, Marco & Janssen, Peter, 2010. "Exploring domestic micro-cogeneration in the Netherlands: An agent-based demand model for technology diffusion," Energy Policy, Elsevier, vol. 38(6), pages 2763-2775, June.
    10. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    11. Yu, Zhun (Jerry) & Haghighat, Fariborz & Fung, Benjamin C.M. & Morofsky, Edward & Yoshino, Hiroshi, 2011. "A methodology for identifying and improving occupant behavior in residential buildings," Energy, Elsevier, vol. 36(11), pages 6596-6608.
    12. Natarajan, Sukumar & Levermore, Geoffrey J., 2007. "Domestic futures--Which way to a low-carbon housing stock?," Energy Policy, Elsevier, vol. 35(11), pages 5728-5736, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Houda Elmustapha & Thomas Hoppe & Hans Bressers, 2018. "Understanding Stakeholders’ Views and the Influence of the Socio-Cultural Dimension on the Adoption of Solar Energy Technology in Lebanon," Sustainability, MDPI, vol. 10(2), pages 1-17, January.
    2. Lee, Timothy & Yao, Runming & Coker, Phil, 2014. "An analysis of UK policies for domestic energy reduction using an agent based tool," Energy Policy, Elsevier, vol. 66(C), pages 267-279.
    3. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    4. Berardi, Umberto, 2013. "Stakeholders’ influence on the adoption of energy-saving technologies in Italian homes," Energy Policy, Elsevier, vol. 60(C), pages 520-530.
    5. Hurmekoski, Elias & Hetemäki, Lauri, 2013. "Studying the future of the forest sector: Review and implications for long-term outlook studies," Forest Policy and Economics, Elsevier, vol. 34(C), pages 17-29.
    6. E. Adinyira & T. E. Kwofie & F. Quarcoo, 2018. "Stakeholder requirements for building energy efficiency in mass housing delivery: the House of Quality approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1115-1131, June.
    7. Luciano C. Siebert & Adriana Sbicca & Alexandre Rasi Aoki & Germano Lambert-Torres, 2017. "A Behavioral Economics Approach to Residential Electricity Consumption," Energies, MDPI, vol. 10(6), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    2. Lee, Timothy & Yao, Runming & Coker, Phil, 2014. "An analysis of UK policies for domestic energy reduction using an agent based tool," Energy Policy, Elsevier, vol. 66(C), pages 267-279.
    3. Theofano Fotiou & Alessia de Vita & Pantelis Capros, 2019. "Economic-Engineering Modelling of the Buildings Sector to Study the Transition towards Deep Decarbonisation in the EU," Energies, MDPI, vol. 12(14), pages 1-28, July.
    4. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
    5. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    7. Allen, S.R. & Hammond, G.P., 2010. "Thermodynamic and carbon analyses of micro-generators for UK households," Energy, Elsevier, vol. 35(5), pages 2223-2234.
    8. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    9. Ozarisoy, B. & Altan, H., 2022. "Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the South-eastern Mediterranean climate: Energy policy desi," Energy, Elsevier, vol. 244(PB).
    10. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    11. Olanrewaju, O.A & Jimoh, A.A, 2014. "Review of energy models to the development of an efficient industrial energy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 661-671.
    12. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    13. Kelly, S., 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector," Cambridge Working Papers in Economics 1139, Faculty of Economics, University of Cambridge.
    14. Gautier, Pieter & van Vuuren, Aico & Siegmann, Arjen, 2007. "The Effect of the Theo van Gogh Murder on House Prices in Amsterdam," CEPR Discussion Papers 6175, C.E.P.R. Discussion Papers.
    15. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    16. Francesco Andreoli & Eugenio Peluso, 2016. "So close yet so unequal: Reconsidering spatial inequality in U.S. cities," Working Papers 21/2016, University of Verona, Department of Economics.
    17. Jeremy Pais & Scott South & Kyle Crowder, 2009. "White Flight Revisited: A Multiethnic Perspective on Neighborhood Out-Migration," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 28(3), pages 321-346, June.
    18. Gandica, Yerali & Gargiulo, Floriana & Carletti, Timoteo, 2016. "Can topology reshape segregation patterns?," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 46-54.
    19. Lindbeck, Assar, 1997. "Incentives and Social Norms in Household Behavior," American Economic Review, American Economic Association, vol. 87(2), pages 370-377, May.
    20. Karla Hoff & Arijit Sen, 2005. "Homeownership, Community Interactions, and Segregation," American Economic Review, American Economic Association, vol. 95(4), pages 1167-1189, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:363-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.