IDEAS home Printed from https://ideas.repec.org/p/zbw/cauewp/201811.html
   My bibliography  Save this paper

On the estimation of behavioral macroeconomic models via simulated maximum likelihood

Author

Listed:
  • Kukacka, Jiri
  • Jang, Tae-Seok
  • Sacht, Stephen

Abstract

In this paper, we introduce the simulated maximum likelihood method for identifying behavioral heuristics of heterogeneous agents in the baseline three-equation New Keynesian model. The method is extended to multivariate macroeconomic optimization problems, and the estimation pro-cedure is applied to empirical data sets. This approach considerably relaxes restrictive theoretical assumptions and enables a novel estimation of the intensity of choice parameter in discrete choice. In Monte Carlo simulations, we analyze the properties and behavior of the estimation method, which provides important information on the behavioral parameters of the New Keynesian model. However, the curse of dimensionality arises via a consistent downward bias for idiosyncratic shocks. Our empirical results show that the forward-looking version of both the behavioral and the rational model specifications exhibits good performance. We identify potential sources of misspecification for the hybrid version. A novel feature of our analysis is that we pin down the switching parameter for the intensity of choice for the Euro Area and US economy.

Suggested Citation

  • Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
  • Handle: RePEc:zbw:cauewp:201811
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/190330/1/EWP-2018-11.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. Franke, Reiner & Jang, Tae-Seok & Sacht, Stephen, 2015. "Moment matching versus Bayesian estimation: Backward-looking behaviour in a New-Keynesian baseline model," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 126-154.
    3. Paul De Grauwe, 2010. "Top-Down versus Bottom-Up Macroeconomics," CESifo Economic Studies, CESifo, vol. 56(4), pages 465-497, December.
    4. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    5. G. Fagiolo & C. Birchenhall & P. Windrum, 2007. "Empirical Validation in Agent-based Models: Introduction to the Special Issue," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 189-194, October.
    6. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1433-1445, October.
    7. Szabolcs Deák & Paul Levine & Joseph Pearlman & Bo Yang, 2017. "Internal Rationality, Learning and Imperfect Information," School of Economics Discussion Papers 0817, School of Economics, University of Surrey.
    8. Sylvain Barde & Sander van der Hoog, 2017. "An empirical validation protocol for large-scale agent-based models," Studies in Economics 1712, School of Economics, University of Kent.
    9. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.
    10. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    11. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    12. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    13. Lee, Donghoon & Song, Kyungchul, 2015. "Simulated maximum likelihood estimation for discrete choices using transformed simulated frequencies," Journal of Econometrics, Elsevier, vol. 187(1), pages 131-153.
    14. Milani, Fabio, 2007. "Expectations, learning and macroeconomic persistence," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2065-2082, October.
    15. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous-Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    16. V. V Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2002. "Can Sticky Price Models Generate Volatile and Persistent Real Exchange Rates?," Review of Economic Studies, Oxford University Press, vol. 69(3), pages 533-563.
    17. Jang, Tae-Seok & Sacht, Stephen, 2018. "Forecast heuristics, consumer expectations, and new-Keynesian macroeconomics: A horse race," Economics Working Papers 2018-09, Christian-Albrechts-University of Kiel, Department of Economics.
    18. Jang, Tae-Seok & Sacht, Stephen, 2017. "Modeling consumer confidence and its role for expectation formation: A horse race," Economics Working Papers 2017-04, Christian-Albrechts-University of Kiel, Department of Economics.
    19. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    20. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    21. Tae-Seok Jang & Stephen Sacht, 2016. "Animal Spirits and the Business Cycle: Empirical Evidence from Moment Matching," Metroeconomica, Wiley Blackwell, vol. 67(1), pages 76-113, February.
    22. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    23. Liu, Chunping & Minford, Patrick, 2014. "Comparing behavioural and rational expectations for the US post-war economy," Economic Modelling, Elsevier, vol. 43(C), pages 407-415.
    24. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    25. Hommes,Cars, 2015. "Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems," Cambridge Books, Cambridge University Press, number 9781107564978.
    26. repec:eee:dyncon:v:85:y:2017:i:c:p:21-45 is not listed on IDEAS
    27. De Grauwe, Paul, 2012. "Booms and busts in economic activity: A behavioral explanation," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 484-501.
    28. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    29. Paul Grauwe, 2011. "Animal spirits and monetary policy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 423-457, June.
    30. Filippo Altissimo & Antonio Mele, 2009. "Simulated Non-Parametric Estimation of Dynamic Models," Review of Economic Studies, Oxford University Press, vol. 76(2), pages 413-450.
    31. repec:eee:dyncon:v:91:y:2018:i:c:p:391-408 is not listed on IDEAS
    32. Franke, Reiner, 2009. "Applying the method of simulated moments to estimate a small agent-based asset pricing model," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 804-815, December.
    33. repec:eee:ecosta:v:5:y:2018:i:c:p:83-106 is not listed on IDEAS
    34. repec:spr:jeicoo:v:13:y:2018:i:2:d:10.1007_s11403-016-0181-0 is not listed on IDEAS
    35. Giorgio Fagiolo & Alessio Moneta & Paul Windrum, 2007. "A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 195-226, October.
    36. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    37. Fagan, Gabriel & Henry, Jérôme & Mestre, Ricardo, 2001. "An area-wide model (AWM) for the euro area," Working Paper Series 42, European Central Bank.
    38. Fagan, Gabriel & Henry, Jérôme & Mestre, Ricardo, 2001. "An area-wide model (AWM) for the euro area," Working Paper Series 0042, European Central Bank.
    39. Blake LeBaron & Leigh Tesfatsion, 2008. "Modeling Macroeconomies as Open-Ended Dynamic Systems of Interacting Agents," American Economic Review, American Economic Association, vol. 98(2), pages 246-250, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jang, Tae-Seok & Sacht, Stephen, 2018. "Forecast heuristics, consumer expectations, and new-Keynesian macroeconomics: A horse race," Economics Working Papers 2018-09, Christian-Albrechts-University of Kiel, Department of Economics.

    More about this item

    Keywords

    Behavioral Heuristics; Intensity of Choice; Monte Carlo Simulations; New-Keynesian Model; Simulated Maximum Likelihood;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E12 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Keynes; Keynesian; Post-Keynesian
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:201811. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - Leibniz Information Centre for Economics). General contact details of provider: http://edirc.repec.org/data/vakiede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.