IDEAS home Printed from https://ideas.repec.org/f/pku316.html
   My authors  Follow this author

Jiri Kukacka

Personal Details

First Name:Jiri
Middle Name:
Last Name:Kukacka
Suffix:
RePEc Short-ID:pku316
http://ies.fsv.cuni.cz/en/staff/kukacka
Terminal Degree:2016 Institut ekonomických studií; Univerzita Karlova v Praze (from RePEc Genealogy)

Affiliation

Institut ekonomických studií
Univerzita Karlova v Praze

Praha, Czech Republic
http://ies.fsv.cuni.cz/
RePEc:edi:icunicz (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Kukacka, Jiri & Sacht, Stephen, 2021. "Estimation of Heuristic Switching in Behavioral Macroeconomic Models," Economics Working Papers 2021-01, Christian-Albrechts-University of Kiel, Department of Economics.
  2. Periklis Brakatsoulas & Jiri Kukacka, 2020. "Credit Rating Downgrade Risk on Equity Returns," Working Papers IES 2020/13, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised May 2020.
  3. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
  4. Jiri Kukacka & Jozef Barunik, 2016. "Simulated ML Estimation of Financial Agent-Based Models," Working Papers IES 2016/07, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Mar 2016.
  5. Jan Polach & Jiri Kukacka, 2016. "Prospect Theory in the Heterogeneous Agent Model," Working Papers IES 2016/14, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2016.
  6. Kukacka, Jiri & Barunik, Jozef, 2016. "Estimation of financial agent-based models with simulated maximum likelihood," FinMaP-Working Papers 63, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
  7. Jiri Kukacka & Filip Stanek, 2015. "The Impact of the Tobin Tax in a Heterogeneous Agent Model of the Foreign Exchange Market," Working Papers IES 2015/26, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Nov 2015.
  8. Jozef Barunik & Jiri Kukacka, 2013. "Realizing stock market crashes: stochastic cusp catastrophe model of returns under the time-varying volatility," Papers 1302.7036, arXiv.org, revised May 2013.
  9. Jiri Kukacka & Jozef Barunik, 2012. "Behavioural breaks in the heterogeneous agent model: the impact of herding, overconfidence, and market sentiment," Papers 1205.3763, arXiv.org, revised May 2013.

Articles

  1. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
  2. Jan Polach & Jiri Kukacka, 2019. "Prospect Theory in the Heterogeneous Agent Model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(1), pages 147-174, March.
  3. Filip Stanek & Jiri Kukacka, 2018. "The Impact of the Tobin Tax in a Heterogeneous Agent Model of the Foreign Exchange Market," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 865-892, April.
  4. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
  5. Jozef Barunik & Jiri Kukacka, 2015. "Realizing stock market crashes: stochastic cusp catastrophe model of returns under time-varying volatility," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 959-973, June.
  6. Kukacka, Jiri & Barunik, Jozef, 2013. "Behavioural breaks in the heterogeneous agent model: The impact of herding, overconfidence, and market sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5920-5938.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.

    Cited by:

    1. Jang, Tae-Seok & Sacht, Stephen, 2021. "Forecast heuristics, consumer expectations, and New-Keynesian macroeconomics: A Horse race," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 493-511.
    2. De Grauwe, Paul & Ji, Yuemei, 2020. "Structural reforms, animal spirits and monetary policies," LSE Research Online Documents on Economics 103502, London School of Economics and Political Science, LSE Library.
    3. Paul De Grauwe & Yuemei Ji, 2021. "On the Use of Current or Forward-Looking Data in Monetary Policy: A Behavioural Macroeconomic Approach," CESifo Working Paper Series 8853, CESifo.

  2. Jiri Kukacka & Jozef Barunik, 2016. "Simulated ML Estimation of Financial Agent-Based Models," Working Papers IES 2016/07, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Mar 2016.

    Cited by:

    1. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Donovan Platt & Tim Gebbie, 2016. "The Problem of Calibrating an Agent-Based Model of High-Frequency Trading," Papers 1606.01495, arXiv.org, revised Mar 2017.
    3. Lamperti, Francesco, 2018. "An information theoretic criterion for empirical validation of simulation models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 83-106.
    4. Lux, Thomas, 2017. "Estimation of agent-based models using sequential Monte Carlo methods," Economics Working Papers 2017-07, Christian-Albrechts-University of Kiel, Department of Economics.

  3. Jan Polach & Jiri Kukacka, 2016. "Prospect Theory in the Heterogeneous Agent Model," Working Papers IES 2016/14, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2016.

    Cited by:

    1. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    2. Steinbacher, Mitja & Raddant, Matthias & Karimi, Fariba & Camacho-Cuena, Eva & Alfarano, Simone & Iori, Giulia & Lux, Thomas, 2021. "Advances in the Agent-Based Modeling of Economic and Social Behavior," MPRA Paper 107317, University Library of Munich, Germany.
    3. Brianzoni, Serena & Campisi, Giovanni, 2020. "Dynamical analysis of a financial market with fundamentalists, chartists, and imitators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

  4. Kukacka, Jiri & Barunik, Jozef, 2016. "Estimation of financial agent-based models with simulated maximum likelihood," FinMaP-Working Papers 63, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.

    Cited by:

    1. Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Papers 1703.10639, arXiv.org, revised Apr 2017.
    2. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    3. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
    4. Domenico Delli Gatti & Jakob Grazzini, 2019. "Rising to the Challenge: Bayesian Estimation and Forecasting Techniques for Macroeconomic Agent-Based Models," CESifo Working Paper Series 7894, CESifo.
    5. Mohammad Ghaderi, 2020. "Public Health Interventions in the Face of Pandemics: Network Structure, Social Distancing, and Heterogeneity," Working Papers 1193, Barcelona Graduate School of Economics.
    6. Lucas Fievet & Didier Sornette, 2018. "Calibrating emergent phenomena in stock markets with agent based models," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.
    7. Özge Dilaver & Robert Jump & Paul Levine, 2016. "Agent-based Macroeconomics and Dynamic Stochastic General Equilibrium Models: Where do we go from here?," School of Economics Discussion Papers 0116, School of Economics, University of Surrey.
    8. Filippo Gusella & Engelbert Stockhammer, 2020. "Testing fundamentalist-momentum trader financial cycles. An empirical analysis via the Kalman filter," Working Papers PKWP2009, Post Keynesian Economics Society (PKES).
    9. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    10. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    11. Sylvain Barde, 2019. "Macroeconomic simulation comparison with a multivariate extension of the Markov Information Criterion," Studies in Economics 1908, School of Economics, University of Kent.
    12. Jan Polach & Jiri Kukacka, 2016. "Prospect Theory in the Heterogeneous Agent Model," Working Papers IES 2016/14, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2016.
    13. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Yanqiao Zheng & Xiaobing Zhao & Xiaoqi Zhang & Xinyue Ye & Qiwen Dai, 2019. "Mining the Hidden Link Structure from Distribution Flows for a Spatial Social Network," Complexity, Hindawi, vol. 2019, pages 1-17, May.
    15. Donovan Platt & Tim Gebbie, 2016. "The Problem of Calibrating an Agent-Based Model of High-Frequency Trading," Papers 1606.01495, arXiv.org, revised Mar 2017.
    16. Tedeschi, Gabriele & Recchioni, Maria Cristina & Berardi, Simone, 2019. "An approach to identifying micro behavior: How banks’ strategies influence financial cycles," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 329-346.
    17. Mohammad Ghaderi, 2020. "Public health interventions in the face of pandemics: network structure, social distancing, and heterogeneity," Economics Working Papers 1732, Department of Economics and Business, Universitat Pompeu Fabra.
    18. Shiono, Takashi, 2021. "Estimation of agent-based models using Bayesian deep learning approach of BayesFlow," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    19. Kukacka, Jiri & Sacht, Stephen, 2021. "Estimation of Heuristic Switching in Behavioral Macroeconomic Models," Economics Working Papers 2021-01, Christian-Albrechts-University of Kiel, Department of Economics.
    20. Filippo Gusella & Giorgio Ricchiuti, 2021. "State Space Model to Detect Cycles in Heterogeneous Agents Models," Working Papers - Economics wp2021_10.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    21. Simone Berardi & Gabriele Tedeschi, 2016. "How banks’ strategies influence financial cycles: An approach to identifying micro behavior," Working Papers 2016/24, Economics Department, Universitat Jaume I, Castellón (Spain).
    22. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    23. Emna Mnif & Anis Jarboui & M. Kabir Hassan & Khaireddine Mouakhar, 2020. "Big data tools for Islamic financial analysis," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(1), pages 10-21, January.
    24. Filippo Gusella, 2019. "Modelling Minskyan financial cycles with fundamentalist and extrapolative price strategies: An empirical analysis via the Kalman filter approach," Working Papers - Economics wp2019_24.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    25. Grilli, Ruggero & Tedeschi, Gabriele & Gallegati, Mauro, 2020. "Business fluctuations in a behavioral switching model: Gridlock effects and credit crunch phenomena in financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    26. Nils Bertschinger & Iurii Mozzhorin, 2021. "Bayesian estimation and likelihood-based comparison of agent-based volatility models," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(1), pages 173-210, January.

  5. Jiri Kukacka & Filip Stanek, 2015. "The Impact of the Tobin Tax in a Heterogeneous Agent Model of the Foreign Exchange Market," Working Papers IES 2015/26, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Nov 2015.

    Cited by:

    1. Li, Xiao-Ping & Zhou, Chun-Yang & Tong, Bin, 2019. "Carry trades, agent heterogeneity and the exchange rate," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 343-358.
    2. Schmitt, Noemi & Schwartz, Ivonne & Westerhoff, Frank H., 2020. "Heterogeneous speculators and stock market dynamics: A simple agent-based computational model," BERG Working Paper Series 160, Bamberg University, Bamberg Economic Research Group.
    3. Li, XiaoPing & Tong, Bin & Zhou, ChunYang, 2020. "Uncertainty aversion, carry trades and agent heterogeneity in the FX market," Finance Research Letters, Elsevier, vol. 36(C).
    4. Qian Zhang & Kuo-Jui Wu & Ming-Lang Tseng, 2019. "Exploring Carry Trade and Exchange Rate toward Sustainable Financial Resources: An application of the Artificial Intelligence UKF Method," Sustainability, MDPI, vol. 11(12), pages 1-26, June.

  6. Jozef Barunik & Jiri Kukacka, 2013. "Realizing stock market crashes: stochastic cusp catastrophe model of returns under the time-varying volatility," Papers 1302.7036, arXiv.org, revised May 2013.

    Cited by:

    1. Michael S. Harr'e & Adam Harris & Scott McCallum, 2019. "Singularities and Catastrophes in Economics: Historical Perspectives and Future Directions," Papers 1907.05582, arXiv.org.
    2. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    3. Mohamed M. Mostafa, 2020. "Catastrophe Theory Predicts International Concern for Global Warming," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 709-731, September.
    4. Bolgorian, Meysam, 2019. "Can a cusp catastrophe model describe the effect of sanctions on exchange rates?," Economics Discussion Papers 2019-2, Kiel Institute for the World Economy (IfW).
    5. Kukacka, Jiri & Barunik, Jozef, 2016. "Estimation of financial agent-based models with simulated maximum likelihood," FinMaP-Working Papers 63, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    6. Wang, J., 2015. "Can a stochastic cusp catastrophe model explain housing market crashes?," CeNDEF Working Papers 15-12, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    7. Dennis Wesselbaum, 2017. "Catastrophe theory and the financial crisis," Scottish Journal of Political Economy, Scottish Economic Society, vol. 64(4), pages 376-391, September.
    8. Michael S. Harr'e, 2018. "Multi-agent Economics and the Emergence of Critical Markets," Papers 1809.01332, arXiv.org.

  7. Jiri Kukacka & Jozef Barunik, 2012. "Behavioural breaks in the heterogeneous agent model: the impact of herding, overconfidence, and market sentiment," Papers 1205.3763, arXiv.org, revised May 2013.

    Cited by:

    1. Rodrigo Fernandes Malaquias & Gleison de Abreu Pontes, 2018. "Liquidity Restrictions on Investment Funds: Are they a Response to Behavioral Bias?," Brazilian Business Review, Fucape Business School, vol. 15(4), pages 382-390, July.
    2. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    3. da Silva, Eduardo Borges & Silva, Thiago Christiano & Constantino, Michel & Amancio, Diego Raphael & Tabak, Benjamin Miranda, 2020. "Overconfidence and the 2D:4D ratio," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    4. Yuri Biondi & Simone Righi, 2013. "What does the financial market pricing do? A simulation analysis with a view to systemic volatility, exuberance and vagary," Papers 1312.7460, arXiv.org.
    5. Jan Polach & Jiri Kukacka, 2016. "Prospect Theory in the Heterogeneous Agent Model," Working Papers IES 2016/14, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2016.
    6. Kukacka, Jiri & Barunik, Jozef, 2016. "Estimation of financial agent-based models with simulated maximum likelihood," FinMaP-Working Papers 63, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    7. Jia, Linlu & Ke, Jinchuan & Wang, Jun, 2019. "Volatility aggregation intensity energy futures series on stochastic finite-range exclusion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 370-383.
    8. Zhong, Li-Xin & Xu, Wen-Juan & Chen, Rong-Da & Zhong, Chen-Yang & Qiu, Tian & Ren, Fei & He, Yun-Xing, 2018. "Self-reinforcing feedback loop in financial markets with coupling of market impact and momentum traders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 301-310.
    9. Heba M. Ezzat, 2019. "Disposition effect and multi-asset market dynamics," Review of Behavioral Finance, Emerald Group Publishing, vol. 11(2), pages 144-164, June.
    10. Suman Gupta & Vinay Goyal & Vinay Kumar Kalakbandi & Sankarshan Basu, 2018. "Overconfidence, trading volume and liquidity effect in Asia’s Giants: evidence from pre-, during- and post-global recession," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 45(3), pages 235-257, September.
    11. M. Fern'andez-Mart'inez & M. A S'anchez-Granero & Mar'ia Jos'e Mu~noz Torrecillas & Bill McKelvey, 2016. "A comparison among some Hurst exponent approaches to predict nascent bubbles in $500$ company stocks," Papers 1601.04188, arXiv.org.

Articles

  1. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).

    Cited by:

    1. Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2021. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," Papers 2102.05405, arXiv.org.
    2. F. Cavalli & A. Naimzada & N. Pecora & M. Pireddu, 2021. "Market sentiment and heterogeneous agents in an evolutive financial model," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1189-1219, September.
    3. Schmitt, Noemi & Schwartz, Ivonne & Westerhoff, Frank H., 2020. "Heterogeneous speculators and stock market dynamics: A simple agent-based computational model," BERG Working Paper Series 160, Bamberg University, Bamberg Economic Research Group.
    4. Bariviera, Aurelio F., 2021. "One model is not enough: Heterogeneity in cryptocurrencies’ multifractal profiles," Finance Research Letters, Elsevier, vol. 39(C).
    5. Huang, Chuangxia & Deng, Yunke & Yang, Xiaoguang & Cao, Jinde & Yang, Xin, 2021. "A network perspective of comovement and structural change: Evidence from the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 76(C).

  2. Jan Polach & Jiri Kukacka, 2019. "Prospect Theory in the Heterogeneous Agent Model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(1), pages 147-174, March.
    See citations under working paper version above.
  3. Filip Stanek & Jiri Kukacka, 2018. "The Impact of the Tobin Tax in a Heterogeneous Agent Model of the Foreign Exchange Market," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 865-892, April.
    See citations under working paper version above.
  4. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    See citations under working paper version above.
  5. Jozef Barunik & Jiri Kukacka, 2015. "Realizing stock market crashes: stochastic cusp catastrophe model of returns under time-varying volatility," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 959-973, June.
    See citations under working paper version above.
  6. Kukacka, Jiri & Barunik, Jozef, 2013. "Behavioural breaks in the heterogeneous agent model: The impact of herding, overconfidence, and market sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5920-5938.
    See citations under working paper version above.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 10 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (4) 2016-04-23 2016-11-27 2018-12-24 2021-03-08. Author is listed
  2. NEP-ORE: Operations Research (4) 2016-07-23 2018-12-24 2020-06-08 2021-03-08. Author is listed
  3. NEP-CMP: Computational Economics (3) 2012-05-22 2016-04-23 2021-03-08. Author is listed
  4. NEP-FMK: Financial Markets (3) 2013-03-02 2014-12-03 2020-06-08. Author is listed
  5. NEP-DCM: Discrete Choice Models (2) 2018-12-24 2021-03-08
  6. NEP-MAC: Macroeconomics (2) 2018-12-24 2021-03-08
  7. NEP-CBE: Cognitive & Behavioural Economics (1) 2012-05-22
  8. NEP-CWA: Central & Western Asia (1) 2021-03-08
  9. NEP-HME: Heterodox Microeconomics (1) 2016-07-23
  10. NEP-MST: Market Microstructure (1) 2014-12-03
  11. NEP-OPM: Open Economy Macroeconomics (1) 2015-12-12
  12. NEP-PBE: Public Economics (1) 2015-12-12
  13. NEP-RMG: Risk Management (1) 2020-06-08
  14. NEP-UPT: Utility Models & Prospect Theory (1) 2016-07-23

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Jiri Kukacka should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.