IDEAS home Printed from https://ideas.repec.org/p/frz/wpaper/wp2021_10.rdf.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

State Space Model to Detect Cycles in Heterogeneous Agents Models

Author

Listed:
  • Filippo Gusella
  • Giorgio Ricchiuti

Abstract

We propose an empirical test to depict possible endogenous cycles within Heterogeneous Agent Models (HAMs). We consider a 2-type HAM into a standard small-scale dynamic asset pricing framework. On the one hand, fundamentalists base their expectations on the deviation of fundamental value from market price expecting a convergence between them. On the other hand, chartists, subject to self-fulling moods, consider the level of past prices and relate it to the fundamental value acting as contrarians. These pricing strategies, by their nature, cannot be directly observed but can cause the response of the observed data. For this reason, we consider the agents' beliefs as unobserved state components from which, through a state space model formulation, the heterogeneity of fundamentalist-chartist trader cycles can be mathematically derived and empirically tested. The model is estimated using the S&P500 index, for the period 1990-2020 at different time scales, specifically, daily, monthly, and quarterly.

Suggested Citation

  • Filippo Gusella & Giorgio Ricchiuti, 2021. "State Space Model to Detect Cycles in Heterogeneous Agents Models," Working Papers - Economics wp2021_10.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
  • Handle: RePEc:frz:wpaper:wp2021_10.rdf
    as

    Download full text from publisher

    File URL: https://www.disei.unifi.it/upload/sub/pubblicazioni/repec/pdf/wp10_2021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filippo Gusella & Engelbert Stockhammer, 2021. "Testing fundamentalist–momentum trader financial cycles: An empirical analysis via the Kalman filter," Metroeconomica, Wiley Blackwell, vol. 72(4), pages 758-797, November.
    2. Commandeur, Jacques J.F. & Koopman, Siem Jan, 2007. "An Introduction to State Space Time Series Analysis," OUP Catalogue, Oxford University Press, number 9780199228874, Decembrie.
    3. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    4. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    5. Hommes, Cars & in ’t Veld, Daan, 2017. "Booms, busts and behavioural heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 101-124.
    6. Chiarella, Carl & He, Xue-Zhong, 2002. "Heterogeneous Beliefs, Risk and Learning in a Simple Asset Pricing Model," Computational Economics, Springer;Society for Computational Economics, vol. 19(1), pages 95-132, February.
    7. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    8. Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
    9. Chiarella, Carl & He, Xue-Zhong & Zwinkels, Remco C.J., 2014. "Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 1-16.
    10. Franke, Reiner, 2009. "Applying the method of simulated moments to estimate a small agent-based asset pricing model," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 804-815, December.
    11. Chiarella, Carl & He, Xue-Zhong & Huang, Weihong & Zheng, Huanhuan, 2012. "Estimating behavioural heterogeneity under regime switching," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 446-460.
    12. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    13. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    14. Saskia ter Ellen & Willem F. C. Verschoor, 2018. "Heterogeneous Beliefs and Asset Price Dynamics: A Survey of Recent Evidence," Dynamic Modeling and Econometrics in Economics and Finance, in: Fredj Jawadi (ed.), Uncertainty, Expectations and Asset Price Dynamics, pages 53-79, Springer.
    15. Alan P. Kirman, 1992. "Whom or What Does the Representative Individual Represent?," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 117-136, Spring.
    16. Lof, Matthijs, 2012. "Heterogeneity in stock prices: A STAR model with multivariate transition function," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1845-1854.
    17. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2006. "Estimation of a simple agent-based model of financial markets: An application to Australian stock and foreign exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 38-42.
    18. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    19. Roberto Veneziani & Luca Zamparelli & Reiner Franke & Frank Westerhoff, 2017. "Taking Stock: A Rigorous Modelling Of Animal Spirits In Macroeconomics," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1152-1182, December.
    20. Delli Gatti, Domenico & Grazzini, Jakob, 2020. "Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.
    21. Blake LeBaron & Leigh Tesfatsion, 2008. "Modeling Macroeconomies as Open-Ended Dynamic Systems of Interacting Agents," American Economic Review, American Economic Association, vol. 98(2), pages 246-250, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippo Gusella & Giorgio Ricchiuti, 2022. "A State-Space Approach for Time-Series Prediction of an Heterogeneous Agent Model," Working Papers - Economics wp2022_20.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    2. Filippo Gusella, 2022. "Detecting And Measuring Financial Cycles In Heterogeneous Agents Models: An Empirical Analysis," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 25(02n03), pages 1-22, March.
    3. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    4. Filippo Gusella, 2019. "Modelling Minskyan financial cycles with fundamentalist and extrapolative price strategies: An empirical analysis via the Kalman filter approach," Working Papers - Economics wp2019_24.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    5. Roberto Dieci & Xue-Zhong He, 2018. "Heterogeneous Agent Models in Finance," Research Paper Series 389, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    7. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Ryuichi Yamamoto, 2022. "Predictor Choice, Investor Types, and the Price Impact of Trades on the Tokyo Stock Exchange," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 325-356, January.
    9. Filippo Gusella & Engelbert Stockhammer, 2021. "Testing fundamentalist–momentum trader financial cycles: An empirical analysis via the Kalman filter," Metroeconomica, Wiley Blackwell, vol. 72(4), pages 758-797, November.
    10. Zheng, Min & Liu, Ruipeng & Li, Youwei, 2018. "Long memory in financial markets: A heterogeneous agent model perspective," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 38-51.
    11. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    12. Saskia ter Ellen & Willem F.C. Verschoor, 2017. "Heterogeneous beliefs and asset price dynamics: a survey of recent evidence," Working Paper 2017/22, Norges Bank.
    13. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
    14. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    15. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    16. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    17. Kukacka, Jiri & Sacht, Stephen, 2023. "Estimation of heuristic switching in behavioral macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    18. Klein, A. & Urbig, D. & Kirn, S., 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 14433, University Library of Munich, Germany.
    19. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    20. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.

    More about this item

    Keywords

    Heterogeneous Agents Models; Endogenous Cycles; State Space Model; Kalman Filter;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:frz:wpaper:wp2021_10.rdf. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giorgio Ricchiuti (email available below). General contact details of provider: https://edirc.repec.org/data/defirit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.