Black-box Bayesian inference for economic agent-based models
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Joel Dyer & Patrick Cannon & J. Doyne Farmer & Sebastian Schmon, 2022. "Black-box Bayesian inference for economic agent-based models," Papers 2202.00625, arXiv.org.
References listed on IDEAS
- Brock, William A. & Hommes, Cars H., 1998.
"Heterogeneous beliefs and routes to chaos in a simple asset pricing model,"
Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
- Brock, W.A. & Hommes, C.H., 1996. "Hetergeneous Beliefs and Routes to Chaos in a Simple Asset Pricing Model," Working papers 9621, Wisconsin Madison - Social Systems.
- Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
- Nicolas Malleson & Kevin Minors & Le-Minh Kieu & Jonathan Ward & Andrew West & Alison Heppenstall, 2020. "Simulating Crowds in Real Time with Agent-Based Modelling and a Particle Filter," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(3), pages 1-3.
- Simon N. Wood, 2010. "Statistical inference for noisy nonlinear ecological dynamic systems," Nature, Nature, vol. 466(7310), pages 1102-1104, August.
- Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
- Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
- Chris Sherlock & Alexandre H. Thiery & Anthony Lee, 2017. "Pseudo-marginal Metropolis–Hastings sampling using averages of unbiased estimators," Biometrika, Biometrika Trust, vol. 104(3), pages 727-734.
- Franke, Reiner, 2009. "Applying the method of simulated moments to estimate a small agent-based asset pricing model," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 804-815, December.
- Wilkinson Richard David, 2013. "Approximate Bayesian computation (ABC) gives exact results under the assumption of model error," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(2), pages 129-141, May.
- Shiono, Takashi, 2021. "Estimation of agent-based models using Bayesian deep learning approach of BayesFlow," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
- Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
- S M Schmon & G Deligiannidis & A Doucet & M K Pitt, 2021. "Large-sample asymptotics of the pseudo-marginal method," Biometrika, Biometrika Trust, vol. 108(1), pages 37-51.
- Franke, Reiner & Westerhoff, Frank, 2012.
"Structural stochastic volatility in asset pricing dynamics: Estimation and model contest,"
Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
- Franke, Reiner & Westerhoff, Frank, 2011. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," BERG Working Paper Series 78, Bamberg University, Bamberg Economic Research Group.
- A. Doucet & M. K. Pitt & G. Deligiannidis & R. Kohn, 2015. "Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator," Biometrika, Biometrika Trust, vol. 102(2), pages 295-313.
- Kukacka, Jiri & Barunik, Jozef, 2017.
"Estimation of financial agent-based models with simulated maximum likelihood,"
Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
- Kukacka, Jiri & Barunik, Jozef, 2016. "Estimation of financial agent-based models with simulated maximum likelihood," FinMaP-Working Papers 63, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 96(4), pages 983-990.
- Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017.
"Bayesian estimation of agent-based models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
- Jakob Grazzini & Matteo Richiardi & Mike Tsionas, 2015. "Bayesian Estimation of Agent-Based Models," Economics Papers 2015-W12, Economics Group, Nuffield College, University of Oxford.
- Jakob Grazzini & Matteo G. Richiardi & Mike Tsionas, 2015. "Bayesian Estimation of Agent-Based Models," LABORatorio R. Revelli Working Papers Series 145, LABORatorio R. Revelli, Centre for Employment Studies.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Aldo Glielmo & Marco Favorito & Debmallya Chanda & Domenico Delli Gatti, 2023. "Reinforcement Learning for Combining Search Methods in the Calibration of Economic ABMs," Papers 2302.11835, arXiv.org, revised Dec 2023.
- Kukacka, Jiri & Sacht, Stephen, 2023.
"Estimation of heuristic switching in behavioral macroeconomic models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
- Kukacka, Jiri & Sacht, Stephen, 2021. "Estimation of Heuristic Switching in Behavioral Macroeconomic Models," Economics Working Papers 2021-01, Christian-Albrechts-University of Kiel, Department of Economics.
- Vadim Grishchenko & Ivan Krylov, 2024. "New Approaches to Measuring, Analysing, and Forecasting Prices: A Review of the Bank of Russia, NES, and HSE University Workshop," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 92-111, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dyer, Joel & Cannon, Patrick & Farmer, J. Doyne & Schmon, Sebastian M., 2024. "Black-box Bayesian inference for agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 161(C).
- Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
- Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
- Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
- Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
- Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
- Kukacka, Jiri & Sacht, Stephen, 2023.
"Estimation of heuristic switching in behavioral macroeconomic models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
- Kukacka, Jiri & Sacht, Stephen, 2021. "Estimation of Heuristic Switching in Behavioral Macroeconomic Models," Economics Working Papers 2021-01, Christian-Albrechts-University of Kiel, Department of Economics.
- Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018.
"Agent-based model calibration using machine learning surrogates,"
Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-03458875, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Sciences Po Economics Publications (main) hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Papers 1703.10639, arXiv.org, revised Apr 2017.
- Frencesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-based model calibration using machine learning surrogates," Documents de Travail de l'OFCE 2017-09, Observatoire Francais des Conjonctures Economiques (OFCE).
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," LEM Papers Series 2017/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018.
"Agent-based model calibration using machine learning surrogates,"
Journal of Economic Dynamics and Control,
Elsevier, vol. 90(C), pages 366-389.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2018. "Agent-based model calibration using machine learning surrogates," Sciences Po publications info:hdl:2441/13thfd12aa8, Sciences Po.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Sciences Po publications 2017-09, Sciences Po.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Papers 1703.10639, arXiv.org, revised Apr 2017.
- Frencesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-based model calibration using machine learning surrogates," Documents de Travail de l'OFCE 2017-09, Observatoire Francais des Conjonctures Economiques (OFCE).
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," LEM Papers Series 2017/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017.
"Validation of Agent-Based Models in Economics and Finance,"
LEM Papers Series
2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2019. "Validation of Agent-Based Models in Economics and Finance," Post-Print halshs-02375423, HAL.
- Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2019. "Validation of Agent-Based Models in Economics and Finance," Sciences Po Economics Publications (main) halshs-02375423, HAL.
- Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
- Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
- Delli Gatti, Domenico & Grazzini, Jakob, 2020.
"Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models,"
Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.
- Domenico Delli Gatti & Jakob Grazzini, 2019. "Rising to the Challenge: Bayesian Estimation and Forecasting Techniques for Macroeconomic Agent-Based Models," CESifo Working Paper Series 7894, CESifo.
- Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
- Emanuele Ciola & Edoardo Gaffeo & Mauro Gallegati, 2021. "Search for Profits and Business Fluctuations: How Banks' Behaviour Explain Cycles?," Working Papers 450, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
- Zhang, Jinyu & Zhang, Qiaosen & Li, Yong & Wang, Qianchao, 2023. "Sequential Bayesian inference for agent-based models with application to the Chinese business cycle," Economic Modelling, Elsevier, vol. 126(C).
- Martinoli, Mario & Moneta, Alessio & Pallante, Gianluca, 2024.
"Calibration and validation of macroeconomic simulation models by statistical causal search,"
Journal of Economic Behavior & Organization, Elsevier, vol. 228(C).
- Mario Martinoli & Alessio Moneta & Gianluca Pallante, 2022. "Calibration and Validation of Macroeconomic Simulation Models by Statistical Causal Search," LEM Papers Series 2022/33, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Shiono, Takashi, 2021. "Estimation of agent-based models using Bayesian deep learning approach of BayesFlow," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
- Szymon Chudziak, 2025. "Studying economic complexity with agent-based models: advances, challenges and future perspectives," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 20(2), pages 413-449, April.
- Platt, Donovan & Gebbie, Tim, 2018. "Can agent-based models probe market microstructure?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1092-1106.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:amz:wpaper:2022-05. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: INET Oxford admin team (email available below). General contact details of provider: https://edirc.repec.org/data/inoxfuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/amz/wpaper/2022-05.html