IDEAS home Printed from https://ideas.repec.org/a/spr/jeicoo/v14y2019i1d10.1007_s11403-018-0219-6.html
   My bibliography  Save this article

Prospect Theory in the Heterogeneous Agent Model

Author

Listed:
  • Jan Polach

    () (Moody’s Analytics UK Ltd)

  • Jiri Kukacka

    () (Charles University
    Institute of Information Theory and Automation of the Czech Academy of Sciences)

Abstract

Using the Heterogeneous Agent Model framework, we incorporate an extension based on Prospect Theory into a popular agent-based asset pricing model. This extension covers the phenomenon of loss aversion manifested in risk aversion and asymmetric treatment of gains and losses. Using Monte Carlo methods, we investigate behavior and statistical properties of the extended model and assess how our extension is manifested in different strategies. We show that, on the one hand, the Prospect Theory extension keeps the essential underlying mechanics of the model intact, but on the other hand it considerably changes the model dynamics. Stability of the model is increased and fundamentalists may be able to survive in the market more easily. When only the fundamentalists are loss-averse, other strategies profit more.

Suggested Citation

  • Jan Polach & Jiri Kukacka, 2019. "Prospect Theory in the Heterogeneous Agent Model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(1), pages 147-174, March.
  • Handle: RePEc:spr:jeicoo:v:14:y:2019:i:1:d:10.1007_s11403-018-0219-6
    DOI: 10.1007/s11403-018-0219-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11403-018-0219-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. De Giorgi, Enrico G. & Legg, Shane, 2012. "Dynamic portfolio choice and asset pricing with narrow framing and probability weighting," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 951-972.
    2. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    3. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    4. De Giorgi, Enrico & Hens, Thorsten & Rieger, Marc Oliver, 2010. "Financial market equilibria with cumulative prospect theory," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 633-651, September.
    5. Chia-Lin Chang & Michael McAleer & Les Oxley, 2011. "Great Expectatrics: Great Papers, Great Journals, Great Econometrics," Econometric Reviews, Taylor & Francis Journals, vol. 30(6), pages 583-619.
    6. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, Oxford University Press, vol. 110(1), pages 73-92.
    7. Lars Peter Hansen & James J. Heckman, 1996. "The Empirical Foundations of Calibration," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 87-104, Winter.
    8. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    9. Tedeschi, Gabriele & Iori, Giulia & Gallegati, Mauro, 2012. "Herding effects in order driven markets: The rise and fall of gurus," Journal of Economic Behavior & Organization, Elsevier, vol. 81(1), pages 82-96.
    10. William A. Branch, 2004. "The Theory of Rationally Heterogeneous Expectations: Evidence from Survey Data on Inflation Expectations," Economic Journal, Royal Economic Society, vol. 114(497), pages 592-621, July.
    11. Hommes,Cars, 2015. "Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems," Cambridge Books, Cambridge University Press, number 9781107564978, December.
    12. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    13. Hommes, Cars, 2011. "The heterogeneous expectations hypothesis: Some evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 1-24, January.
    14. Kukacka, Jiri & Barunik, Jozef, 2013. "Behavioural breaks in the heterogeneous agent model: The impact of herding, overconfidence, and market sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5920-5938.
    15. Frankel, Jeffrey A & Froot, Kenneth A, 1990. "Chartists, Fundamentalists, and Trading in the Foreign Exchange Market," American Economic Review, American Economic Association, vol. 80(2), pages 181-185, May.
    16. Shimokawa, Tetsuya & Suzuki, Kyoko & Misawa, Tadanobu, 2007. "An agent-based approach to financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 207-225.
    17. Tu, Q., 2005. "Empirical analysis of time preferences and risk aversion," Other publications TiSEM 01bd1b38-5741-4f44-8996-7, Tilburg University, School of Economics and Management.
    18. Jozef Barunik & Lukas Vacha & Miloslav Vosvrda, 2009. "Smart predictors in the heterogeneous agent model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(2), pages 163-172, November.
    19. Mikhail Anufriev & Cars Hommes, 2012. "Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 35-64, November.
    20. Glenn Harrison & E. Rutström, 2009. "Expected utility theory and prospect theory: one wedding and a decent funeral," Experimental Economics, Springer;Economic Science Association, vol. 12(2), pages 133-158, June.
    21. Vacha, Lukas & Barunik, Jozef & Vosvrda, Miloslav, 2012. "How do skilled traders change the structure of the market," International Review of Financial Analysis, Elsevier, vol. 23(C), pages 66-71.
    22. Norman Ehrentreich, 2008. "Agent-Based Modeling," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-73879-4, December.
    23. Shi-Nan Cao & Jing Deng & Honggang Li, 2010. "Prospect theory and risk appetite: an application to traders’ strategies in the financial market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 5(2), pages 249-259, December.
    24. Kenneth D. West, 1988. "Bubbles, Fads, and Stock Price Volatility Tests: A Partial Evaluation," NBER Working Papers 2574, National Bureau of Economic Research, Inc.
    25. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    26. Li, Yan & Yang, Liyan, 2013. "Prospect theory, the disposition effect, and asset prices," Journal of Financial Economics, Elsevier, vol. 107(3), pages 715-739.
    27. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    28. Shefrin, Hersh & Statman, Meir, 1985. "The Disposition to Sell Winners Too Early and Ride Losers Too Long: Theory and Evidence," Journal of Finance, American Finance Association, vol. 40(3), pages 777-790, July.
    29. Nicholas Barberis & Ming Huang & Tano Santos, 2001. "Prospect Theory and Asset Prices," The Quarterly Journal of Economics, Oxford University Press, vol. 116(1), pages 1-53.
    30. Zhang, Wenlang & Semmler, Willi, 2009. "Prospect theory for stock markets: Empirical evidence with time-series data," Journal of Economic Behavior & Organization, Elsevier, vol. 72(3), pages 835-849, December.
    31. Grüne, Lars & Semmler, Willi, 2008. "Asset pricing with loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3253-3274, October.
    32. Yao, Jing & Li, Duan, 2013. "Prospect theory and trading patterns," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2793-2805.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    2. Brianzoni, Serena & Campisi, Giovanni, 2020. "Dynamical analysis of a financial market with fundamentalists, chartists, and imitators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    2. Guo, Jing & He, Xue Dong, 2017. "Equilibrium asset pricing with Epstein-Zin and loss-averse investors," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 86-108.
    3. Easley, David & Yang, Liyan, 2015. "Loss aversion, survival and asset prices," Journal of Economic Theory, Elsevier, vol. 160(C), pages 494-516.
    4. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE.
    5. Colasante, Annarita & Palestrini, Antonio & Russo, Alberto & Gallegati, Mauro, 2017. "Adaptive expectations versus rational expectations: Evidence from the lab," International Journal of Forecasting, Elsevier, vol. 33(4), pages 988-1006.
    6. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE.
    7. Enrico Giorgi & Thorsten Hens, 2006. "Making prospect theory fit for finance," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 339-360, September.
    8. Lucks, Konstantin, 2016. "The Impact of Self-Control on Investment Decisions," MPRA Paper 73099, University Library of Munich, Germany.
    9. Anufriev, Mikhail & Chernulich, Aleksei & Tuinstra, Jan, 2018. "A laboratory experiment on the heuristic switching model," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 21-42.
    10. David Hirshleife, 2015. "Behavioral Finance," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 133-159, December.
    11. Juanjuan Meng & Xi Weng, 2018. "Can Prospect Theory Explain the Disposition Effect? A New Perspective on Reference Points," Management Science, INFORMS, vol. 64(7), pages 3331-3351, July.
    12. Committee, Nobel Prize, 2017. "Richard H. Thaler: Integrating Economics with Psychology," Nobel Prize in Economics documents 2017-1, Nobel Prize Committee.
    13. Henderson, Vicky & Hobson, David & Tse, Alex S.L., 2018. "Probability weighting, stop-loss and the disposition effect," Journal of Economic Theory, Elsevier, vol. 178(C), pages 360-397.
    14. Vicky Henderson, 2012. "Prospect Theory, Liquidation, and the Disposition Effect," Management Science, INFORMS, vol. 58(2), pages 445-460, February.
    15. Annarita COLASANTE & Antonio PALESTRINI & Alberto RUSSO & Mauro GALLEGATI, 2015. "Adaptive Expectations with Correction Bias: Evidence from the lab," Working Papers 409, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    16. Booij, Adam S. & van de Kuilen, Gijs, 2009. "A parameter-free analysis of the utility of money for the general population under prospect theory," Journal of Economic Psychology, Elsevier, vol. 30(4), pages 651-666, August.
    17. Soufian, Mona & Forbes, William & Hudson, Robert, 2014. "Adapting financial rationality: Is a new paradigm emerging?," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 25(8), pages 724-742.
    18. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. S. Dellavigna., 2011. "Psychology and Economics: Evidence from the Field," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 5.
    20. Tiziana Assenza & Te Bao & Cars Hommes & Domenico Massaro, 2014. "Experiments on Expectations in Macroeconomics and Finance," Research in Experimental Economics, in: John Duffy (ed.),Experiments in Macroeconomics, volume 17, pages 11-70, Emerald Publishing Ltd.

    More about this item

    Keywords

    Heterogeneous Agent Model; Prospect Theory; Behavioral finance; Stylized facts;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jeicoo:v:14:y:2019:i:1:d:10.1007_s11403-018-0219-6. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.