IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0193290.html
   My bibliography  Save this article

Calibrating emergent phenomena in stock markets with agent based models

Author

Listed:
  • Lucas Fievet
  • Didier Sornette

Abstract

Since the 2008 financial crisis, agent-based models (ABMs), which account for out-of-equilibrium dynamics, heterogeneous preferences, time horizons and strategies, have often been envisioned as the new frontier that could revolutionise and displace the more standard models and tools in economics. However, their adoption and generalisation is drastically hindered by the absence of general reliable operational calibration methods. Here, we start with a different calibration angle that qualifies an ABM for its ability to achieve abnormal trading performance with respect to the buy-and-hold strategy when fed with real financial data. Starting from the common definition of standard minority and majority agents with binary strategies, we prove their equivalence to optimal decision trees. This efficient representation allows us to exhaustively test all meaningful single agent models for their potential anomalous investment performance, which we apply to the NASDAQ Composite index over the last 20 years. We uncover large significant predictive power, with anomalous Sharpe ratio and directional accuracy, in particular during the dotcom bubble and crash and the 2008 financial crisis. A principal component analysis reveals transient convergence between the anomalous minority and majority models. A novel combination of the optimal single-agent models of both classes into a two-agents model leads to remarkable superior investment performance, especially during the periods of bubbles and crashes. Our design opens the field of ABMs to construct novel types of advanced warning systems of market crises, based on the emergent collective intelligence of ABMs built on carefully designed optimal decision trees that can be reversed engineered from real financial data.

Suggested Citation

  • Lucas Fievet & Didier Sornette, 2018. "Calibrating emergent phenomena in stock markets with agent based models," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.
  • Handle: RePEc:plo:pone00:0193290
    DOI: 10.1371/journal.pone.0193290
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193290
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0193290&type=printable
    Download Restriction: no

    References listed on IDEAS

    as
    1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    2. Barde, Sylvain, 2016. "Direct comparison of agent-based models of herding in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 329-353.
    3. Recchioni, Maria Cristina & Tedeschi, Gabriele & Gallegati, Mauro, 2015. "A calibration procedure for analyzing stock price dynamics in an agent-based framework," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 1-25.
    4. W. Brian Arthur, 1994. "Inductive Reasoning, Bounded Rationality and the Bar Problem," Working Papers 94-03-014, Santa Fe Institute.
    5. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    6. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    7. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    8. Simone Berardi & Gabriele Tedeschi, 2016. "How banks’ strategies influence financial cycles: An approach to identifying micro behavior," Working Papers 2016/24, Economics Department, Universitat Jaume I, Castellón (Spain).
    9. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    10. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    11. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    12. Lux, Thomas, 2012. "Estimation of an agent-based model of investor sentiment formation in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1284-1302.
    13. repec:hrv:faseco:30747159 is not listed on IDEAS
    14. Norman Ehrentreich, 2008. "Agent-Based Modeling," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-73879-4, December.
    15. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    3. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    4. Simone Berardi & Gabriele Tedeschi, 2016. "How banks’ strategies influence financial cycles: An approach to identifying micro behavior," Working Papers 2016/24, Economics Department, Universitat Jaume I, Castellón (Spain).
    5. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    6. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
    7. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    8. Lamperti, Francesco, 2018. "An information theoretic criterion for empirical validation of simulation models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 83-106.
    9. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    10. Lux, Thomas, 2017. "Estimation of agent-based models using sequential Monte Carlo methods," Economics Working Papers 2017-07, Christian-Albrechts-University of Kiel, Department of Economics.
    11. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
    12. Delli Gatti, Domenico & Grazzini, Jakob, 2020. "Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.
    13. Tedeschi, Gabriele & Recchioni, Maria Cristina & Berardi, Simone, 2019. "An approach to identifying micro behavior: How banks’ strategies influence financial cycles," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 329-346.
    14. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    15. Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.
    16. Nils Bertschinger & Iurii Mozzhorin, 0. "Bayesian estimation and likelihood-based comparison of agent-based volatility models," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 0, pages 1-38.
    17. Magda Fontana, 2010. "The Santa Fe Perspective on economics: emerging patterns in the science of complexity," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 167-196.
    18. Kristoufek, Ladislav & Vošvrda, Miloslav S., 2016. "Herding, minority game, market clearing and efficient markets in a simple spin model framework," FinMaP-Working Papers 68, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    19. Cross, Rod & Grinfeld, Michael & Lamba, Harbir & Seaman, Tim, 2005. "A threshold model of investor psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 463-478.
    20. Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02000726, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0193290. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (plosone). General contact details of provider: https://journals.plos.org/plosone/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.