IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/6946370.html

Validation and Calibration of an Agent-Based Model: A Surrogate Approach

Author

Listed:
  • Yi Zhang
  • Zhe Li
  • Yongchao Zhang

Abstract

Agent-based modelling has been proved to be extremely useful for learning about real world societies through the analysis of simulations. Recent agent-based models usually contain a large number of parameters that capture the interactions among microheterogeneous subjects and the multistructure of the complex system. However, this can result in the “curse of dimensionality” phenomenon and decrease the robustness of the model’s output. Hence, it is still a great challenge to efficiently calibrate agent-based models to actual data. In this paper, we present a surrogate analysis method for calibration by combining supervised machine-learning and intelligent iterative sampling. Without any prior assumptions regarding the distribution of the parameter space, the proposed method can learn a surrogate model as the approximation of the original system with a relatively small number of training points, which will serve the needs of further sensitivity analysis and parameter calibration research. We take the heterogeneous asset pricing model as an example to evaluate the model’s performance using actual Chinese stock market data. The results demonstrate the good capabilities of the surrogate model at modelling the observed reality, as well as the remarkable reduction of the computational time for validating the agent-based model.

Suggested Citation

  • Yi Zhang & Zhe Li & Yongchao Zhang, 2020. "Validation and Calibration of an Agent-Based Model: A Surrogate Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-9, January.
  • Handle: RePEc:hin:jnddns:6946370
    DOI: 10.1155/2020/6946370
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2020/6946370.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2020/6946370.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6946370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Gilli, M. & Winker, P., 2003. "A global optimization heuristic for estimating agent based models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 299-312, March.
    3. Francesco Lamperti & Antoine Mandel & Mauro Napoletano & Alessandro Sapio & Andrea Roventini & Tomas Balint & Igor Khorenzhenko, 2017. "Taming macroeconomic instability," PSE-Ecole d'économie de Paris (Postprint) hal-03399574, HAL.
    4. G. Fagiolo & C. Birchenhall & P. Windrum, 2007. "Empirical Validation in Agent-based Models: Introduction to the Special Issue," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 189-194, October.
    5. Recchioni, Maria Cristina & Tedeschi, Gabriele & Gallegati, Mauro, 2015. "A calibration procedure for analyzing stock price dynamics in an agent-based framework," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 1-25.
    6. Sander Hoog, 2019. "Surrogate Modelling in (and of) Agent-Based Models: A Prospectus," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1245-1263, March.
    7. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    8. Samitas, Aristeidis & Polyzos, Stathis & Siriopoulos, Costas, 2018. "Brexit and financial stability: An agent-based simulation," Economic Modelling, Elsevier, vol. 69(C), pages 181-192.
    9. Popoyan, Lilit & Napoletano, Mauro & Roventini, Andrea, 2017. "Taming macroeconomic instability: Monetary and macro-prudential policy interactions in an agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 117-140.
    10. Lucas Fievet & Didier Sornette, 2018. "Calibrating emergent phenomena in stock markets with agent based models," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.
    11. Boppart, Timo & Krusell, Per & Mitman, Kurt, 2018. "Exploiting MIT shocks in heterogeneous-agent economies: the impulse response as a numerical derivative," Journal of Economic Dynamics and Control, Elsevier, vol. 89(C), pages 68-92.
    12. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    13. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    14. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    15. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    16. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    17. Caiani, Alessandro & Godin, Antoine & Caverzasi, Eugenio & Gallegati, Mauro & Kinsella, Stephen & Stiglitz, Joseph E., 2016. "Agent based-stock flow consistent macroeconomics: Towards a benchmark model," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 375-408.
    18. Assenza, Tiziana & Delli Gatti, Domenico & Grazzini, Jakob, 2015. "Emergent dynamics of a macroeconomic agent based model with capital and credit," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 5-28.
    19. repec:spo:wpmain:info:hdl:2441/5hussro0tc951q0jqpu8quliqu is not listed on IDEAS
    20. Alizadeh, Amir H. & Thanopoulou, Helen & Yip, Tsz Leung, 2017. "Investors’ behavior and dynamics of ship prices: A heterogeneous agent model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 98-114.
    21. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. repec:spo:wpmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    3. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    4. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    5. Severin Reissl, 2021. "Heterogeneous expectations, forecasting behaviour and policy experiments in a hybrid Agent-based Stock-flow-consistent model," Journal of Evolutionary Economics, Springer, vol. 31(1), pages 251-299, January.
    6. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
    7. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    8. Lamperti, Francesco, 2018. "An information theoretic criterion for empirical validation of simulation models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 83-106.
    9. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    10. Delli Gatti, Domenico & Grazzini, Jakob, 2020. "Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.
    11. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    12. Francesco Lamperti, 2016. "Empirical Validation of Simulated Models through the GSL-div: an Illustrative Application," LEM Papers Series 2016/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    14. Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2020. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," LEM Papers Series 2020/31, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    16. Vandin, Andrea & Giachini, Daniele & Lamperti, Francesco & Chiaromonte, Francesca, 2022. "Automated and distributed statistical analysis of economic agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    17. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    18. Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2021. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," Papers 2102.05405, arXiv.org, revised Nov 2023.
    19. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
    20. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    21. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:6946370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.