IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v107y2017icp27-31.html
   My bibliography  Save this article

A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage

Author

Listed:
  • Devine-Wright, Patrick
  • Batel, Susana
  • Aas, Oystein
  • Sovacool, Benjamin
  • Labelle, Michael Carnegie
  • Ruud, Audun

Abstract

Although social acceptance research has blossomed over the last decade, interdisciplinary studies combining market, socio-political and community aspects are scarce. We propose a novel integration of social science theory in which the belief systems or social representations held by key actors play a crucial role in fostering acceptance of novel technologies, and where a polycentric perspective places particular emphasis on ways that middle actors mediate processes of change between scales. We advance a methodological approach that combines qualitative and quantitative research methods and exemplify the framework by focusing on acceptance of renewable energy storage solutions to accommodate high levels of renewable energy deployment. A research agenda for the social acceptance of energy storage is proposed that sets out key research questions relating international, national and local levels. The outcome of such studies would not only lead to enhanced understanding of processes of social acceptance, but deliver important insights for policy and practice.

Suggested Citation

  • Devine-Wright, Patrick & Batel, Susana & Aas, Oystein & Sovacool, Benjamin & Labelle, Michael Carnegie & Ruud, Audun, 2017. "A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage," Energy Policy, Elsevier, vol. 107(C), pages 27-31.
  • Handle: RePEc:eee:enepol:v:107:y:2017:i:c:p:27-31
    DOI: 10.1016/j.enpol.2017.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517302458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    2. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    3. Smith, Adrian & Raven, Rob, 2012. "What is protective space? Reconsidering niches in transitions to sustainability," Research Policy, Elsevier, vol. 41(6), pages 1025-1036.
    4. Paul C. Stern & Benjamin K. Sovacool & Thomas Dietz, 2016. "Towards a science of climate and energy choices," Nature Climate Change, Nature, vol. 6(6), pages 547-555, June.
    5. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    6. McHenry, Mark P., 2013. "Technical and governance considerations for advanced metering infrastructure/smart meters: Technology, security, uncertainty, costs, benefits, and risks," Energy Policy, Elsevier, vol. 59(C), pages 834-842.
    7. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    8. Sovacool, Benjamin K. & Lakshmi Ratan, Pushkala, 2012. "Conceptualizing the acceptance of wind and solar electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5268-5279.
    9. Lund, P.D., 2009. "Effects of energy policies on industry expansion in renewable energy," Renewable Energy, Elsevier, vol. 34(1), pages 53-64.
    10. Shum, Kwok L. & Watanabe, Chihiro, 2008. "Towards a local learning (innovation) model of solar photovoltaic deployment," Energy Policy, Elsevier, vol. 36(2), pages 508-521, February.
    11. Keith Smith, 2009. "Climate change and radical energy innovation: the policy issues," Working Papers on Innovation Studies 20090101, Centre for Technology, Innovation and Culture, University of Oslo.
    12. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    13. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    14. Owens, Susan & Driffill, Louise, 2008. "How to change attitudes and behaviours in the context of energy," Energy Policy, Elsevier, vol. 36(12), pages 4412-4418, December.
    15. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salm, Sarah & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2016. "What are retail investors' risk-return preferences towards renewable energy projects? A choice experiment in Germany," Energy Policy, Elsevier, vol. 97(C), pages 310-320.
    2. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    3. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Rohe, Sebastian & Chlebna, Camilla, 2021. "A spatial perspective on the legitimacy of a technological innovation system: Regional differences in onshore wind energy," Energy Policy, Elsevier, vol. 151(C).
    5. Kejia Yang & Johan Schot & Bernhard Truffer, 2020. "Shaping the Directionality of Sustainability Transitions: The Diverging Development Patterns of Solar PV in Two Chinese Provinces," SPRU Working Paper Series 2020-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    6. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    7. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    8. Hugo Lucas & Ruth Carbajo & Tomoo Machiba & Evgeny Zhukov & Luisa F. Cabeza, 2021. "Improving Public Attitude towards Renewable Energy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    9. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    10. Dermont, Clau & Ingold, Karin & Kammermann, Lorenz & Stadelmann-Steffen, Isabelle, 2017. "Bringing the policy making perspective in: A political science approach to social acceptance," Energy Policy, Elsevier, vol. 108(C), pages 359-368.
    11. Curtin, Joseph & McInerney, Celine & Ó Gallachóir, Brian, 2017. "Financial incentives to mobilise local citizens as investors in low-carbon technologies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 534-547.
    12. Jan Fagerberg & Håkon Endresen Normann, 2022. "Innovation policy, regulation and the transition to net zero," Working Papers on Innovation Studies 20220531, Centre for Technology, Innovation and Culture, University of Oslo.
    13. Jenkins, Lekelia Danielle & Dreyer, Stacia Jeanne & Polis, Hilary Jacqueline & Beaver, Ezra & Kowalski, Adam A. & Linder, Hannah L. & McMillin, Thomas Neal & McTiernan, Kaylie Laura & Rogier, Thea The, 2018. "Human dimensions of tidal energy: A review of theories and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 323-337.
    14. Júlio César Holanda Araújo & Wallason Farias de Souza & Antonio Jeovah de Andrade Meireles & Christian Brannstrom, 2020. "Sustainability Challenges of Wind Power Deployment in Coastal Ceará State, Brazil," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    15. Taran Loper & Victoria L. Crittenden, 2017. "Energy Security: Shaping The Consumer Decision Making Process In Emerging Economies," Organizations and Markets in Emerging Economies, Faculty of Economics, Vilnius University, vol. 8(1).
    16. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    17. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    18. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    19. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    20. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:107:y:2017:i:c:p:27-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.