IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2955-d369039.html
   My bibliography  Save this article

Innovation Dynamics of Socio-Technical Alignment in Community Energy Storage: The Cases of DrTen and Ecovat

Author

Listed:
  • Binod Prasad Koirala

    (Energy Transition Studies, TNO Energy Transition, 1043 NT Amsterdam, The Netherlands
    Department of Science, Technology and Policy Studies, University of Twente, 7522 NB Enschede, The Netherlands)

  • Ellen van Oost

    (Department of Science, Technology and Policy Studies, University of Twente, 7522 NB Enschede, The Netherlands)

  • Henny van der Windt

    (Science and Society Group, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands)

Abstract

With energy transition gaining momentum, energy storage technologies are increasingly spotlighted as they can effectively handle mismatches in supply and demand. The decreasing cost of distributed energy generation technologies and energy storage technologies as well as increasing demand for local flexibility is opening up new possibilities for the deployment of energy storage technologies in local energy communities. In this context, community energy storage has potential to better integrate energy supply and demand at the local level and can contribute towards accommodating the needs and expectations of citizens and local communities as well as future ecological needs. However, there are techno-economical and socio-institutional challenges of integrating energy storage technologies in the largely centralized present energy system, which demand socio-technical innovation. To gain insight into these challenges, this article studies the technical, demand and political articulations of new innovative local energy storage technologies based on an embedded case study approach. The innovation dynamics of two local energy storage innovations, the seasalt battery of DrTen ® and the seasonal thermal storage Ecovat ® , are analysed. We adopt a co-shaping perspective for understanding innovation dynamics as a result of the socio-institutional dynamics of alignment of various actors, their articulations and the evolving network interactions. Community energy storage necessitates thus not only technical innovation but, simultaneously, social innovation for its successful adoption. We will assess these dynamics also from the responsible innovation framework that articulates various forms of social, environmental and public values. The socio-technical alignment of various actors, human as well as material, is central in building new socio-technical configurations in which the new storage technology, the community and embedded values are being developed.

Suggested Citation

  • Binod Prasad Koirala & Ellen van Oost & Henny van der Windt, 2020. "Innovation Dynamics of Socio-Technical Alignment in Community Energy Storage: The Cases of DrTen and Ecovat," Energies, MDPI, vol. 13(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2955-:d:369039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    2. Jolivet, Eric & Heiskanen, Eva, 2010. "Blowing against the wind--An exploratory application of actor network theory to the analysis of local controversies and participation processes in wind energy," Energy Policy, Elsevier, vol. 38(11), pages 6746-6754, November.
    3. Jens Lowitzsch, 2019. "Consumer Stock Ownership Plans (CSOPs)—The Prototype Business Model for Renewable Energy Communities," Energies, MDPI, vol. 13(1), pages 1-24, December.
    4. Romero-Rubio, Carmen & de Andrés Díaz, José Ramón, 2015. "Sustainable energy communities: a study contrasting Spain and Germany," Energy Policy, Elsevier, vol. 85(C), pages 397-409.
    5. Garud, Raghu & Karnoe, Peter, 2003. "Bricolage versus breakthrough: distributed and embedded agency in technology entrepreneurship," Research Policy, Elsevier, vol. 32(2), pages 277-300, February.
    6. Aune, Margrethe & Godbolt, Åsne Lund & Sørensen, Knut H. & Ryghaug, Marianne & Karlstrøm, Henrik & Næss, Robert, 2016. "Concerned consumption. Global warming changing household domestication of energy," Energy Policy, Elsevier, vol. 98(C), pages 290-297.
    7. Walker, Gordon & Devine-Wright, Patrick, 2008. "Community renewable energy: What should it mean," Energy Policy, Elsevier, vol. 36(2), pages 497-500, February.
    8. van der Schoor, Tineke & Scholtens, Bert, 2015. "Power to the people: Local community initiatives and the transition to sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 666-675.
    9. Geels, Frank W., 2010. "Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective," Research Policy, Elsevier, vol. 39(4), pages 495-510, May.
    10. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    11. Seyfang, Gill & Park, Jung Jin & Smith, Adrian, 2013. "A thousand flowers blooming? An examination of community energy in the UK," Energy Policy, Elsevier, vol. 61(C), pages 977-989.
    12. Binod Prasad Koirala & José Pablo Chaves Ávila & Tomás Gómez & Rudi A. Hakvoort & Paulien M. Herder, 2016. "Local Alternative for Energy Supply: Performance Assessment of Integrated Community Energy Systems," Energies, MDPI, vol. 9(12), pages 1-24, November.
    13. Diego Fernando Quintero Pulido & Gerwin Hoogsteen & Marnix V. Ten Kortenaar & Johann L. Hurink & Robert E. Hebner & Gerard J. M. Smit, 2018. "Characterization of Storage Sizing for an Off-Grid House in the US and the Netherlands," Energies, MDPI, vol. 11(2), pages 1-13, January.
    14. Sanneke Kloppenburg & Robin Smale & Nick Verkade, 2019. "Technologies of Engagement: How Battery Storage Technologies Shape Householder Participation in Energy Transitions," Energies, MDPI, vol. 12(22), pages 1-15, November.
    15. repec:sen:journl:v:14:i:2:y:2013:p:24 is not listed on IDEAS
    16. Scott Kelly & Michael Pollitt, 2011. "The Local Dimension of Energy," Working Papers EPRG 1103, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Ornetzeder, Michael & Rohracher, Harald, 2006. "User-led innovations and participation processes: lessons from sustainable energy technologies," Energy Policy, Elsevier, vol. 34(2), pages 138-150, January.
    18. Patrick Devine-Wright, 2019. "Community versus local energy in a context of climate emergency," Nature Energy, Nature, vol. 4(11), pages 894-896, November.
    19. Mendes, Gonçalo & Ioakimidis, Christos & Ferrão, Paulo, 2011. "On the planning and analysis of Integrated Community Energy Systems: A review and survey of available tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4836-4854.
    20. Wirth, Steffen, 2014. "Communities matter: Institutional preconditions for community renewable energy," Energy Policy, Elsevier, vol. 70(C), pages 236-246.
    21. Barbour, Edward & Parra, David & Awwad, Zeyad & González, Marta C., 2018. "Community energy storage: A smart choice for the smart grid?," Applied Energy, Elsevier, vol. 212(C), pages 489-497.
    22. Gijs J. H. de Goeijen & Gerard J. M. Smit & Johann L. Hurink, 2017. "Improving an Integer Linear Programming Model of an Ecovat Buffer by Adding Long-Term Planning," Energies, MDPI, vol. 10(12), pages 1-18, December.
    23. Cristina Acosta & Mariana Ortega & Till Bunsen & Binod Prasad Koirala & Amineh Ghorbani, 2018. "Facilitating Energy Transition through Energy Commons: An Application of Socio-Ecological Systems Framework for Integrated Community Energy Systems," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    24. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    25. Jamasb,Tooraj & Pollitt,Michael G. (ed.), 2011. "The Future of Electricity Demand," Cambridge Books, Cambridge University Press, number 9781107008502.
    26. van der Stelt, Sander & AlSkaif, Tarek & van Sark, Wilfried, 2018. "Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances," Applied Energy, Elsevier, vol. 209(C), pages 266-276.
    27. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    28. Eunice Espe & Vidyasagar Potdar & Elizabeth Chang, 2018. "Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions," Energies, MDPI, vol. 11(10), pages 1-24, September.
    29. N. Crettenand & M. Finger, 2013. "The Alignment between Institutions and Technology in Network Industries," Competition and Regulation in Network Industries, Intersentia, vol. 14(2), pages 106-130, June.
    30. Devine-Wright, Patrick & Batel, Susana & Aas, Oystein & Sovacool, Benjamin & Labelle, Michael Carnegie & Ruud, Audun, 2017. "A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage," Energy Policy, Elsevier, vol. 107(C), pages 27-31.
    31. Walker, Gordon, 2008. "What are the barriers and incentives for community-owned means of energy production and use?," Energy Policy, Elsevier, vol. 36(12), pages 4401-4405, December.
    32. Lanka Horstink & Julia M. Wittmayer & Kiat Ng & Guilherme Pontes Luz & Esther Marín-González & Swantje Gährs & Inês Campos & Lars Holstenkamp & Sem Oxenaar & Donal Brown, 2020. "Collective Renewable Energy Prosumers and the Promises of the Energy Union: Taking Stock," Energies, MDPI, vol. 13(2), pages 1-30, January.
    33. Esther C. van der Waal & Alexandra M. Das & Tineke van der Schoor, 2020. "Participatory Experimentation with Energy Law: Digging in a ‘Regulatory Sandbox’ for Local Energy Initiatives in the Netherlands," Energies, MDPI, vol. 13(2), pages 1-21, January.
    34. Jay Sterling Gregg & Sophie Nyborg & Meiken Hansen & Valeria Jana Schwanitz & August Wierling & Jan Pedro Zeiss & Sarah Delvaux & Victor Saenz & Lucia Polo-Alvarez & Chiara Candelise & Winston Gilcrea, 2020. "Collective Action and Social Innovation in the Energy Sector: A Mobilization Model Perspective," Energies, MDPI, vol. 13(3), pages 1-24, February.
    35. Bomberg, Elizabeth & McEwen, Nicola, 2012. "Mobilizing community energy," Energy Policy, Elsevier, vol. 51(C), pages 435-444.
    36. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    37. Rogers, J.C. & Simmons, E.A. & Convery, I. & Weatherall, A., 2008. "Public perceptions of opportunities for community-based renewable energy projects," Energy Policy, Elsevier, vol. 36(11), pages 4217-4226, November.
    38. Stilgoe, Jack & Owen, Richard & Macnaghten, Phil, 2013. "Developing a framework for responsible innovation," Research Policy, Elsevier, vol. 42(9), pages 1568-1580.
    39. Gijs J. H. De Goeijen & Gerard J. M. Smit & Johann L. Hurink, 2016. "An Integer Linear Programming Model for an Ecovat Buffer," Energies, MDPI, vol. 9(8), pages 1-21, July.
    40. Diego F. Quintero Pulido & Marnix V. Ten Kortenaar & Johann L. Hurink & Gerard J.M. Smit, 2019. "The Role of Off-Grid Houses in the Energy Transition with a Case Study in the Netherlands," Energies, MDPI, vol. 12(10), pages 1-18, May.
    41. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    42. Esther C. Van der Waal & Henny J. Van der Windt & Ellen C. J. Van Oost, 2018. "How Local Energy Initiatives Develop Technological Innovations: Growing an Actor Network," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    43. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Ridder, Fjo & van Roy, Jeroen & de Schutter, Bert & Mazairac, Wiet, 2021. "An exploration of shared heat storage systems in the greenhouse horticulture industry," Energy, Elsevier, vol. 235(C).
    2. Binod Prasad Koirala & Ellen C. J. van Oost & Esther C. van der Waal & Henny J. van der Windt, 2021. "New Pathways for Community Energy and Storage," Energies, MDPI, vol. 14(2), pages 1-8, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    2. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    3. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    4. Busch, Henner & Ruggiero, Salvatore & Isakovic, Aljosa & Hansen, Teis, 2021. "Policy challenges to community energy in the EU: A systematic review of the scientific literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Haji Bashi, Mazaher & De Tommasi, Luciano & Le Cam, Andreea & Relaño, Lorena Sánchez & Lyons, Padraig & Mundó, Joana & Pandelieva-Dimova, Ivanka & Schapp, Henrik & Loth-Babut, Karolina & Egger, Christ, 2023. "A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    6. Beau Warbroek & Thomas Hoppe & Frans Coenen & Hans Bressers, 2018. "The Role of Intermediaries in Supporting Local Low-Carbon Energy Initiatives," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    7. Klein, Sharon J.W. & Coffey, Stephanie, 2016. "Building a sustainable energy future, one community at a time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 867-880.
    8. Robin Eagle & Aled Jones & Alison Greig, 2017. "Localism and the environment: A critical review of UK Government localism strategy 2010–2015," Local Economy, London South Bank University, vol. 32(1), pages 55-72, February.
    9. Romero-Castro, Noelia & Piñeiro-Chousa, Juan & Pérez-Pico, Ada, 2021. "Dealing with heterogeneity and complexity in the analysis of the willingness to invest in community renewable energy in rural areas," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    10. Gährs, Swantje & Knoefel, Jan, 2020. "Stakeholder demands and regulatory framework for community energy storage with a focus on Germany," Energy Policy, Elsevier, vol. 144(C).
    11. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    13. Chiara Candelise & Gianluca Ruggieri, 2017. "Community Energy in Italy: Heterogeneous institutional characteristics and citizens engagement," IEFE Working Papers 93, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    14. Berka, Anna L. & Creamer, Emily, 2018. "Taking stock of the local impacts of community owned renewable energy: A review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3400-3419.
    15. Bauwens, Thomas & Schraven, Daan & Drewing, Emily & Radtke, Jörg & Holstenkamp, Lars & Gotchev, Boris & Yildiz, Özgür, 2022. "Conceptualizing community in energy systems: A systematic review of 183 definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Amollo Ambole & Kweku Koranteng & Peris Njoroge & Douglas Logedi Luhangala, 2021. "A Review of Energy Communities in Sub-Saharan Africa as a Transition Pathway to Energy Democracy," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    17. Brummer, Vasco, 2018. "Community energy – benefits and barriers: A comparative literature review of Community Energy in the UK, Germany and the USA, the benefits it provides for society and the barriers it faces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 187-196.
    18. Holstenkamp, Lars & Kahla, Franziska, 2016. "What are community energy companies trying to accomplish? An empirical investigation of investment motives in the German case," Energy Policy, Elsevier, vol. 97(C), pages 112-122.
    19. van der Schoor, Tineke & Scholtens, Bert, 2015. "Power to the people: Local community initiatives and the transition to sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 666-675.
    20. Conradie, Peter D. & De Ruyck, Olivia & Saldien, Jelle & Ponnet, Koen, 2021. "Who wants to join a renewable energy community in Flanders? Applying an extended model of Theory of Planned Behaviour to understand intent to participate," Energy Policy, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2955-:d:369039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.