IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p118-d301875.html
   My bibliography  Save this article

Consumer Stock Ownership Plans (CSOPs)—The Prototype Business Model for Renewable Energy Communities

Author

Listed:
  • Jens Lowitzsch

    (Comparative Law, East European Business Law and European Legal Policy at the Faculty of Business Administration and Economics, Europa Universität Viadrina, Große Scharrnstraße 59, D-15230 Frankfurt, Germany)

Abstract

The 2018 recast of the Renewable Energy Directive (RED II) defines “renewable energy communities” (RECs), introducing a new governance model and the possibility of energy sharing for them. It has to be transposed into national law by all European Union Member States until June 2021. This article introduces consumer stock ownership plans (CSOPs) as the prototype business model for RECs. Based on the analysis of a dataset of 67 best-practice cases of consumer (co-) ownership from 18 countries it demonstrates the importance of flexibility of business models to include heterogeneous co-investors for meeting the requirements of the RED II and that of RE clusters. It is shown that CSOPs—designed to facilitate scalable investments in utilities—facilitate co-investments by municipalities, SMEs, plant engineers or energy suppliers. A low-threshold financing method, they enable individuals, in particular low-income households, to invest in renewable projects. Employing one bank loan instead of many micro loans, CSOPs reduce transaction costs and enable consumers to acquire productive capital, providing them with an additional source of income. Stressing the importance of a holistic approach including the governance and the technical side for the acceptance of RECs on the energy markets recommendations for the transposition are formulated.

Suggested Citation

  • Jens Lowitzsch, 2019. "Consumer Stock Ownership Plans (CSOPs)—The Prototype Business Model for Renewable Energy Communities," Energies, MDPI, vol. 13(1), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:118-:d:301875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    3. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    4. Sovacool, Benjamin K. & Burke, Matthew & Baker, Lucy & Kotikalapudi, Chaitanya Kumar & Wlokas, Holle, 2017. "New frontiers and conceptual frameworks for energy justice," Energy Policy, Elsevier, vol. 105(C), pages 677-691.
    5. Alfonso Risso & Alexandre Beluco & Rita De Cássia Marques Alves, 2018. "Complementarity Roses Evaluating Spatial Complementarity in Time between Energy Resources," Energies, MDPI, vol. 11(7), pages 1-14, July.
    6. Musall, Fabian David & Kuik, Onno, 2011. "Local acceptance of renewable energy--A case study from southeast Germany," Energy Policy, Elsevier, vol. 39(6), pages 3252-3260, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Torabi Moghadam & Maria Valentina Di Nicoli & Santiago Manzo & Patrizia Lombardi, 2020. "Mainstreaming Energy Communities in the Transition to a Low-Carbon Future: A Methodological Approach," Energies, MDPI, vol. 13(7), pages 1-25, April.
    2. Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & Sanseverino, Eleonora Riva & Sciumè, Giuseppe & Vasile, Antony, 2021. "Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Binod Prasad Koirala & Ellen van Oost & Henny van der Windt, 2020. "Innovation Dynamics of Socio-Technical Alignment in Community Energy Storage: The Cases of DrTen and Ecovat," Energies, MDPI, vol. 13(11), pages 1-22, June.
    4. Bekirsky, N. & Hoicka, C.E. & Brisbois, M.C. & Ramirez Camargo, L., 2022. "Many actors amongst multiple renewables: A systematic review of actor involvement in complementarity of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Binod Prasad Koirala & Ellen C. J. van Oost & Esther C. van der Waal & Henny J. van der Windt, 2021. "New Pathways for Community Energy and Storage," Energies, MDPI, vol. 14(2), pages 1-8, January.
    6. Shubhra Chaudhry & Arne Surmann & Matthias Kühnbach & Frank Pierie, 2022. "Renewable Energy Communities as Modes of Collective Prosumership: A Multi-Disciplinary Assessment Part II—Case Study," Energies, MDPI, vol. 15(23), pages 1-21, November.
    7. Bernadette Fina & Hubert Fechner, 2021. "Transposition of European Guidelines for Energy Communities into Austrian Law: A Comparison and Discussion of Issues and Positive Aspects," Energies, MDPI, vol. 14(13), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lowitzsch, J. & Hoicka, C.E. & van Tulder, F.J., 2020. "Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    2. Hoicka, Christina E. & MacArthur, Julie L., 2018. "From tip to toes: Mapping community energy models in Canada and New Zealand," Energy Policy, Elsevier, vol. 121(C), pages 162-174.
    3. Leer Jørgensen, Marie & Anker, Helle Tegner & Lassen, Jesper, 2020. "Distributive fairness and local acceptance of wind turbines: The role of compensation schemes," Energy Policy, Elsevier, vol. 138(C).
    4. Esther C. Van der Waal & Henny J. Van der Windt & Ellen C. J. Van Oost, 2018. "How Local Energy Initiatives Develop Technological Innovations: Growing an Actor Network," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    5. Bartolini, Andrea & Comodi, Gabriele & Salvi, Danilo & Østergaard, Poul Alberg, 2020. "Renewables self-consumption potential in districts with high penetration of electric vehicles," Energy, Elsevier, vol. 213(C).
    6. József Magyari & Krisztina Hegedüs & Botond Sinóros-Szabó, 2022. "Integration Opportunities of Power-to-Gas and Internet-of-Things Technical Advancements: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-19, September.
    7. Sulzer, Matthias & Wetter, Michael & Mutschler, Robin & Sangiovanni-Vincentelli, Alberto, 2023. "Platform-based design for energy systems," Applied Energy, Elsevier, vol. 352(C).
    8. Soutar, Iain & Devine-Wright, Patrick & Rohse, Melanie & Walker, Chad & Gooding, Luke & Devine-Wright, Hannah & Kay, Imogen, 2022. "Constructing practices of engagement with users and communities: Comparing emergent state-led smart local energy systems," Energy Policy, Elsevier, vol. 171(C).
    9. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    10. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    11. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    12. Antonino D’Amico & Domenico Panno & Giuseppina Ciulla & Antonio Messineo, 2020. "Multi-Energy School System for Seasonal Use in the Mediterranean Area," Sustainability, MDPI, vol. 12(20), pages 1-27, October.
    13. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    14. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    15. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    16. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    17. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    18. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    19. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    20. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:118-:d:301875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.