IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1597-d339828.html
   My bibliography  Save this article

Mainstreaming Energy Communities in the Transition to a Low-Carbon Future: A Methodological Approach

Author

Listed:
  • Sara Torabi Moghadam

    (Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, 10125 Turin, Italy)

  • Maria Valentina Di Nicoli

    (Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, 10125 Turin, Italy)

  • Santiago Manzo

    (Department of Management and Production Engineering (DIGEP), Politecnico di Torino, 10129 Turin, Italy)

  • Patrizia Lombardi

    (Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, 10125 Turin, Italy)

Abstract

Innovations in technical, financial, and social areas are crucial prerequisites for an effective and sustainable energy transition. In this context, the construction of a new energy structure and the motivation of the consumer towards a change in their consumption behaviours to balance demand with a volatile energy supply are important issues. At the same time, Consumer Stock Ownership Plans (CSOPs) in renewable energies sources (RESs) have proven to be an essential cornerstone in the overall success of energy transition. Indeed, when consumers acquire ownership in RES, they become prosumers, participating in the phase of production and distribution of energy. Prosumers provide benefits by (1) generating a part of the energy they consume, (2) reducing their overall expenditure for energy, and (3) receiving a second source of income from the sale of excess production. Supporting Consumer Co-Ownership in Renewable Energies (SCORE) is an ongoing Horizon 2020 project with the aim of overcoming the usage of energy from fossil sources in favour of RES, promoting the creation of energy communities (EC) and facilitating co-ownership of renewable energies (RE) for consumers. SCORE hereby particularly emphasises the inclusion of women, low-income households, and vulnerable groups affected by fuel poverty that are as a rule excluded from RE investments. In this framework, the main goal of the present study is to illustrate the general procedure and process of EC creation. In particular, this paper focuses on the description of the methodological approach in implementing the CSOP model which consists of three main phases: the identification and description of selected buildings (preparation phase), the preliminary and feasibility analysis phase, and finally the phase of target group involvement. SCORE first started in three pilot regions in Italy, Czech Republic, and Poland, and later, with the aim of extending the methodology, in various other cities across Europe. In this study, Italian pilot study sites were chosen as a case study to develop and test the methodology.

Suggested Citation

  • Sara Torabi Moghadam & Maria Valentina Di Nicoli & Santiago Manzo & Patrizia Lombardi, 2020. "Mainstreaming Energy Communities in the Transition to a Low-Carbon Future: A Methodological Approach," Energies, MDPI, vol. 13(7), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1597-:d:339828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doukas, Haris Ch. & Andreas, Botsikas M. & Psarras, John E., 2007. "Multi-criteria decision aid for the formulation of sustainable technological energy priorities using linguistic variables," European Journal of Operational Research, Elsevier, vol. 182(2), pages 844-855, October.
    2. Jens Lowitzsch, 2019. "Consumer Stock Ownership Plans (CSOPs)—The Prototype Business Model for Renewable Energy Communities," Energies, MDPI, vol. 13(1), pages 1-24, December.
    3. Romero-Rubio, Carmen & de Andrés Díaz, José Ramón, 2015. "Sustainable energy communities: a study contrasting Spain and Germany," Energy Policy, Elsevier, vol. 85(C), pages 397-409.
    4. Ahmed, Abubakari & Gasparatos, Alexandros, 2020. "Multi-dimensional energy poverty patterns around industrial crop projects in Ghana: Enhancing the energy poverty alleviation potential of rural development strategies," Energy Policy, Elsevier, vol. 137(C).
    5. Jovanović, Marina & Afgan, Naim & Radovanović, Predrag & Stevanović, Vladimir, 2009. "Sustainable development of the Belgrade energy system," Energy, Elsevier, vol. 34(5), pages 532-539.
    6. Giuliano Dall'O' & Maria Franca Norese & Annalisa Galante & Chiara Novello, 2013. "A Multi-Criteria Methodology to Support Public Administration Decision Making Concerning Sustainable Energy Action Plans," Energies, MDPI, vol. 6(8), pages 1-23, August.
    7. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    8. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    9. Cavallaro, Fausto & Ciraolo, Luigi, 2005. "A multicriteria approach to evaluate wind energy plants on an Italian island," Energy Policy, Elsevier, vol. 33(2), pages 235-244, January.
    10. Marinakis, Vangelis & Doukas, Haris & Xidonas, Panos & Zopounidis, Constantin, 2017. "Multicriteria decision support in local energy planning: An evaluation of alternative scenarios for the Sustainable Energy Action Plan," Omega, Elsevier, vol. 69(C), pages 1-16.
    11. Brummer, Vasco, 2018. "Community energy – benefits and barriers: A comparative literature review of Community Energy in the UK, Germany and the USA, the benefits it provides for society and the barriers it faces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 187-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    2. Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & Sanseverino, Eleonora Riva & Sciumè, Giuseppe & Vasile, Antony, 2021. "Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Adam X. Hearn & Raul Castaño-Rosa, 2021. "Towards a Just Energy Transition, Barriers and Opportunities for Positive Energy District Creation in Spain," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    4. Maria Alessandra Ancona & Francesco Baldi & Lisa Branchini & Andrea De Pascale & Federico Gianaroli & Francesco Melino & Mattia Ricci, 2022. "Comparative Analysis of Renewable Energy Community Designs for District Heating Networks: Case Study of Corticella (Italy)," Energies, MDPI, vol. 15(14), pages 1-18, July.
    5. Alessandra Chiarini & Lorenzo Compagnucci, 2022. "Blockchain, Data Protection and P2P Energy Trading: A Review on Legal and Economic Challenges," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    6. Domenico Enrico Massimo & Vincenzo Del Giudice & Alessandro Malerba & Carlo Bernardo & Mariangela Musolino & Pierfrancesco De Paola, 2021. "Valuation of Ecological Retrofitting Technology in Existing Buildings: A Real-World Case Study," Sustainability, MDPI, vol. 13(13), pages 1-35, June.
    7. Lucas Roth & Özgür Yildiz & Jens Lowitzsch, 2021. "An Empirical Approach to Differences in Flexible Electricity Consumption Behaviour of Urban and Rural Populations—Lessons Learned in Germany," Sustainability, MDPI, vol. 13(16), pages 1-31, August.
    8. Constantinos A. Balaras, 2022. "Building Energy Audits—Diagnosis and Retrofitting towards Decarbonization and Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-4, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Kurka, Thomas & Blackwood, David, 2013. "Selection of MCA methods to support decision making for renewable energy developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 225-233.
    3. Kurka, Thomas & Blackwood, David, 2013. "Participatory selection of sustainability criteria and indicators for bioenergy developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 92-102.
    4. Mainali, Brijesh & Silveira, Semida, 2015. "Using a sustainability index to assess energy technologies for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1351-1365.
    5. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    6. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    7. Ozorhon, Beliz & Batmaz, Arda & Caglayan, Semih, 2018. "Generating a framework to facilitate decision making in renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 217-226.
    8. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, vol. 12(4), pages 1-29, February.
    9. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    10. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    11. Parajuli, Ranjan & Dalgaard, Tommy & Jørgensen, Uffe & Adamsen, Anders Peter S. & Knudsen, Marie Trydeman & Birkved, Morten & Gylling, Morten & Schjørring, Jan Kofod, 2015. "Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 244-263.
    12. Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
    13. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Harold Espargilliere & Law Torres Sevilla & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A General Framework for Multi-Criteria Based Feasibility Studies for Solar Energy Projects: Application to a Real-World Solar Farm," Energies, MDPI, vol. 14(8), pages 1-34, April.
    14. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    15. Shen, Yung-Chi & Lin, Grace T.R. & Li, Kuang-Pin & Yuan, Benjamin J.C., 2010. "An assessment of exploiting renewable energy sources with concerns of policy and technology," Energy Policy, Elsevier, vol. 38(8), pages 4604-4616, August.
    16. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    17. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    18. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    19. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    20. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1597-:d:339828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.