IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5248-d866964.html
   My bibliography  Save this article

Comparative Analysis of Renewable Energy Community Designs for District Heating Networks: Case Study of Corticella (Italy)

Author

Listed:
  • Maria Alessandra Ancona

    (Department of Industrial Engineering (DIN), Alma Mater Studiorum—University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Francesco Baldi

    (Department of Energy Efficiency (DUEE)—ENEA, Via Martiri di Monte Sole 4, 40129 Bologna, Italy)

  • Lisa Branchini

    (Department of Industrial Engineering (DIN), Alma Mater Studiorum—University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Andrea De Pascale

    (Department of Industrial Engineering (DIN), Alma Mater Studiorum—University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Federico Gianaroli

    (Department of Industrial Engineering (DIN), Alma Mater Studiorum—University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Francesco Melino

    (Department of Industrial Engineering (DIN), Alma Mater Studiorum—University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Mattia Ricci

    (Department of Energy Efficiency (DUEE)—ENEA, Via Martiri di Monte Sole 4, 40129 Bologna, Italy)

Abstract

In recent years, a rapid increase in the adoption of renewable energy sources and in the transition from a centralized electricity generation system to an increasingly distributed one has occurred. Within this scenario, in line with the European directives for achieving the objectives in the field of energy transition and climate change, energy communities are seen as potential contributors. The purpose of this work is to analyze the application potential of the energy community concept associated with district heating networks, leading to better overall energy-economic performance. This was demonstrated for a specific energy community in Italy, and it can be achieved by maximizing internal energy sharing—resulting from the electricity surplus generated by the photovoltaic system—and adopting different strategies that include heat pumps in order to maximize self-consumption and self-sufficiency, as well as to evaluate the most efficient investment in economic terms by exploiting the incentive tariff on shared energy. The results show that the performance of the system can be improved with the proposed design, achieving a significant reduction in the system’s energy demand, emissions and costs: compared to the reference case, the use of photovoltaics reduces primary energy demand by approximately 11%, while the addition of the energy community configuration allows emissions to be reduced by nearly 12%, with no additional investment.

Suggested Citation

  • Maria Alessandra Ancona & Francesco Baldi & Lisa Branchini & Andrea De Pascale & Federico Gianaroli & Francesco Melino & Mattia Ricci, 2022. "Comparative Analysis of Renewable Energy Community Designs for District Heating Networks: Case Study of Corticella (Italy)," Energies, MDPI, vol. 15(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5248-:d:866964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5248/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5248/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viktor Bukovszki & Ábel Magyari & Marina Kristina Braun & Kitti Párdi & András Reith, 2020. "Energy Modelling as a Trigger for Energy Communities: A Joint Socio-Technical Perspective," Energies, MDPI, vol. 13(9), pages 1-44, May.
    2. Anne-Lorene Vernay & Carine Sebi, 2020. "Energy communities and their ecosystems A comparison of France and the Netherlands," Grenoble Ecole de Management (Post-Print) hal-02987790, HAL.
    3. Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & Sanseverino, Eleonora Riva & Sciumè, Giuseppe & Vasile, Antony, 2021. "Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Sartor, K. & Quoilin, S. & Dewallef, P., 2014. "Simulation and optimization of a CHP biomass plant and district heating network," Applied Energy, Elsevier, vol. 130(C), pages 474-483.
    5. Jacopo Vivian & Mattia Chinello & Angelo Zarrella & Michele De Carli, 2022. "Investigation on Individual and Collective PV Self-Consumption for a Fifth Generation District Heating Network," Energies, MDPI, vol. 15(3), pages 1-16, January.
    6. Anne-Lorene Vernay & Carine Sebi, 2020. "Energy communities and their ecosystems A comparison of France and the Netherlands," Post-Print hal-02987790, HAL.
    7. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    8. Genus, A. & Iskandarova, M., 2020. "Transforming the energy system? Technology and organisational legitimacy and the institutionalisation of community renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    9. Zwickl-Bernhard, Sebastian & Auer, Hans, 2022. "Demystifying natural gas distribution grid decommissioning: An open-source approach to local deep decarbonization of urban neighborhoods," Energy, Elsevier, vol. 238(PB).
    10. Secchi, Mattia & Barchi, Grazia & Macii, David & Moser, David & Petri, Dario, 2021. "Multi-objective battery sizing optimisation for renewable energy communities with distribution-level constraints: A prosumer-driven perspective," Applied Energy, Elsevier, vol. 297(C).
    11. Vernay, Anne-Lorène & Sebi, Carine, 2020. "Energy communities and their ecosystems: A comparison of France and the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    12. Moret, Stefano & Babonneau, Frédéric & Bierlaire, Michel & Maréchal, François, 2020. "Decision support for strategic energy planning: A robust optimization framework," European Journal of Operational Research, Elsevier, vol. 280(2), pages 539-554.
    13. Sara Torabi Moghadam & Maria Valentina Di Nicoli & Santiago Manzo & Patrizia Lombardi, 2020. "Mainstreaming Energy Communities in the Transition to a Low-Carbon Future: A Methodological Approach," Energies, MDPI, vol. 13(7), pages 1-25, April.
    14. Abokersh, Mohamed Hany & Gangwar, Sachin & Spiekman, Marleen & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2021. "Sustainability insights on emerging solar district heating technologies to boost the nearly zero energy building concept," Renewable Energy, Elsevier, vol. 180(C), pages 893-913.
    15. Popovski, Eftim & Fleiter, Tobias & Santos, Hugo & Leal, Vitor & Fernandes, Eduardo Oliveira, 2018. "Technical and economic feasibility of sustainable heating and cooling supply options in southern European municipalities-A case study for Matosinhos, Portugal," Energy, Elsevier, vol. 153(C), pages 311-323.
    16. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    17. Sebi, Carine & Vernay, Anne-Lorène, 2020. "Community renewable energy in France: The state of development and the way forward," Energy Policy, Elsevier, vol. 147(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Blasuttigh & Simone Negri & Alessandro Massi Pavan & Enrico Tironi, 2023. "Optimal Sizing and Environ-Economic Analysis of PV-BESS Systems for Jointly Acting Renewable Self-Consumers," Energies, MDPI, vol. 16(3), pages 1-25, January.
    2. Ceglia, Francesca & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio, 2023. "Energy and environmental assessment of a biomass-based renewable energy community including photovoltaic and hydroelectric systems," Energy, Elsevier, vol. 282(C).
    3. Francesca Ceglia & Elisa Marrasso & Chiara Martone & Giovanna Pallotta & Carlo Roselli & Maurizio Sasso, 2023. "Towards the Decarbonization of Industrial Districts through Renewable Energy Communities: Techno-Economic Feasibility of an Italian Case Study," Energies, MDPI, vol. 16(6), pages 1-23, March.
    4. Andrea Sarcina & Rubina Canesi, 2023. "Renewable Energy Community: Opportunities and Threats towards Green Transition," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    5. Margherita Povolato & Alessandro Prada & Sara Verones & Silvia Debiasi & Paolo Baggio, 2023. "The Impact of Energy Community Composition on Its Technical and Economic Performance," Energies, MDPI, vol. 16(14), pages 1-15, July.
    6. Damir Požgaj & Branimir Pavković & Boris Delač & Vladimir Glažar, 2023. "Retrofitting of the District Heating System Based on the Application of Heat Pumps Operating with Natural Refrigerants," Energies, MDPI, vol. 16(4), pages 1-28, February.
    7. Paula Sankelo & Kaiser Ahmed & Alo Mikola & Jarek Kurnitski, 2022. "Renovation Results of Finnish Single-Family Renovation Subsidies: Oil Boiler Replacement with Heat Pumps," Energies, MDPI, vol. 15(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & Sanseverino, Eleonora Riva & Sciumè, Giuseppe & Vasile, Antony, 2021. "Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Kemi Adeyeye & John Gallagher & Aonghus McNabola & Helena M. Ramos & Paul Coughlan, 2021. "Socio-Technical Viability Framework for Micro Hydropower in Group Water-Energy Schemes," Energies, MDPI, vol. 14(14), pages 1-21, July.
    3. Vernay, Anne-Lorène & Olsthoorn, Mark & Sebi, Carine & Gauthier, Caroline, 2023. "The identity trap of community renewable energy in France," Energy Policy, Elsevier, vol. 177(C).
    4. Vernay, Anne-Lorène & Sebi, Carine & Arroyo, Fabrice, 2023. "Energy community business models and their impact on the energy transition: Lessons learnt from France," Energy Policy, Elsevier, vol. 175(C).
    5. Wainer, A. & Petrovics, D. & van der Grijp, N., 2022. "The grid access of energy communities a comparison of power grid governance in France and Germany," Energy Policy, Elsevier, vol. 170(C).
    6. Neska, Ewa & Kowalska-Pyzalska, Anna, 2022. "Conceptual design of energy market topologies for communities and their practical applications in EU: A comparison of three case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Elena Tarpani & Cristina Piselli & Claudia Fabiani & Ilaria Pigliautile & Eelke J. Kingma & Benedetta Pioppi & Anna Laura Pisello, 2022. "Energy Communities Implementation in the European Union: Case Studies from Pioneer and Laggard Countries," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    8. Man Zhou & Uliana Pysmenna & Oleksandra Kubatko & Volodymyr Voloshchuk & Iryna Sotnyk & Galyna Trypolska, 2023. "Support for Household Prosumers in the Early Stages of Power Market Decentralization in Ukraine," Energies, MDPI, vol. 16(17), pages 1-15, September.
    9. Iskandarova, Marfuga & Vernay, Anne-Lorène & Musiolik, Jörg & Müller, Leticia & Sovacool, Benjamin K., 2022. "Tangled transitions: Exploring the emergence of local electricity exchange in France, Switzerland and Great Britain," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    10. Jawed Mustafa & Fahad Awjah Almehmadi & Saeed Alqaed & Mohsen Sharifpur, 2022. "Building a Sustainable Energy Community: Design and Integrate Variable Renewable Energy Systems for Rural Communities," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    11. Guelpa, Elisa & Verda, Vittorio, 2018. "Model for optimal malfunction management in extended district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 519-530.
    12. A.S.M. Mominul Hasan, 2020. "Electric Rickshaw Charging Stations as Distributed Energy Storages for Integrating Intermittent Renewable Energy Sources: A Case of Bangladesh," Energies, MDPI, vol. 13(22), pages 1-28, November.
    13. Sebi, Carine & Vernay, Anne-Lorène, 2020. "Community renewable energy in France: The state of development and the way forward," Energy Policy, Elsevier, vol. 147(C).
    14. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    15. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    16. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    17. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    18. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    19. Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
    20. Lode, M.L. & te Boveldt, G. & Coosemans, T. & Ramirez Camargo, L., 2022. "A transition perspective on Energy Communities: A systematic literature review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5248-:d:866964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.