IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13792-d951914.html
   My bibliography  Save this article

Building a Sustainable Energy Community: Design and Integrate Variable Renewable Energy Systems for Rural Communities

Author

Listed:
  • Jawed Mustafa

    (Mechanical Engineering Department, College of Engineering, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia)

  • Fahad Awjah Almehmadi

    (Department of Applied Mechanical Engineering, College of Applied Engineering, Muzahimiyah Branch, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Saeed Alqaed

    (Mechanical Engineering Department, College of Engineering, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia)

  • Mohsen Sharifpur

    (Department of Mechanical and Aeronautical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria 0002, South Africa
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan)

Abstract

This study proposes a decentralized hybrid energy system consisting of solar photovoltaics (PV) and wind turbines (WT) connected with the local power grid for a small Najran, Saudi Arabia community. The goal is to provide the selected community with sustainable energy to cover a partial load of the residential buildings and the power requirements for irrigation. For this, a dynamic model was constructed to estimate the hourly energy demand for residential buildings consisting of 20 apartments with a total floor area of 4640 m 2 , and the energy requirements for irrigation to supply a farm of 10,000 m 2 with water. Subsequently, HOMER software was used to optimize the proposed hybrid energy system. Even considering the hourly fluctuations of renewable energies, the artificial neural network (ANN) successfully estimated PV and wind energy. Based on the mathematical calculations, the final R-square values were 0.928 and 0.993 for PV and wind energy, respectively. According to the findings, the cost of energy (COE) for the optimized hybrid energy system is $0.1053/kWh with a renewable energy penetration of 65%. In addition, the proposed system will save 233 tons of greenhouse gases annually.

Suggested Citation

  • Jawed Mustafa & Fahad Awjah Almehmadi & Saeed Alqaed & Mohsen Sharifpur, 2022. "Building a Sustainable Energy Community: Design and Integrate Variable Renewable Energy Systems for Rural Communities," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13792-:d:951914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehrara, Mohsen, 2007. "Energy consumption and economic growth: The case of oil exporting countries," Energy Policy, Elsevier, vol. 35(5), pages 2939-2945, May.
    2. Pal, Ankit & Bhattacharjee, Subhadeep, 2020. "Effectuation of biogas based hybrid energy system for cost-effective decentralized application in small rural community," Energy, Elsevier, vol. 203(C).
    3. Anne-Lorene Vernay & Carine Sebi, 2020. "Energy communities and their ecosystems A comparison of France and the Netherlands," Post-Print hal-02987790, HAL.
    4. Li, Hang & Hou, Kai & Xu, Xiandong & Jia, Hongjie & Zhu, Lewei & Mu, Yunfei, 2022. "Probabilistic energy flow calculation for regional integrated energy system considering cross-system failures," Applied Energy, Elsevier, vol. 308(C).
    5. Krarti, Moncef & Dubey, Kankana & Howarth, Nicholas, 2017. "Evaluation of building energy efficiency investment options for the Kingdom of Saudi Arabia," Energy, Elsevier, vol. 134(C), pages 595-610.
    6. Saeed Alqaed & Jawed Mustafa & Fahad Awjah Almehmadi, 2021. "Design and Energy Requirements of a Photovoltaic-Thermal Powered Water Desalination Plant for the Middle East," IJERPH, MDPI, vol. 18(3), pages 1-16, January.
    7. Pan, Wen-Tsao & Zhuang, Mei-Er & Zhou, Ying-Ying & Yang, Jia-Jia, 2021. "Research on sustainable development and efficiency of China's E-Agriculture based on a data envelopment analysis-Malmquist model," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    8. Xu, Xiaomin & Niu, Dongxiao & Xiao, Bowen & Guo, Xiaodan & Zhang, Lihui & Wang, Keke, 2020. "Policy analysis for grid parity of wind power generation in China," Energy Policy, Elsevier, vol. 138(C).
    9. Anne-Lorene Vernay & Carine Sebi, 2020. "Energy communities and their ecosystems A comparison of France and the Netherlands," Grenoble Ecole de Management (Post-Print) hal-02987790, HAL.
    10. J. Jed Brown & Probir Das & Mohammad Al-Saidi, 2018. "Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation," Sustainability, MDPI, vol. 10(5), pages 1-16, April.
    11. Zhang, Minhui & Zhang, Qin, 2020. "Grid parity analysis of distributed photovoltaic power generation in China," Energy, Elsevier, vol. 206(C).
    12. Chowdhury, Tamal & Chowdhury, Hemal & Miskat, Monirul Islam & Chowdhury, Piyal & Sait, Sadiq M. & Thirugnanasambandam, M. & Saidur, R., 2020. "Developing and evaluating a stand-alone hybrid energy system for Rohingya refugee community in Bangladesh," Energy, Elsevier, vol. 191(C).
    13. Dan Welsby & James Price & Steve Pye & Paul Ekins, 2021. "Unextractable fossil fuels in a 1.5 °C world," Nature, Nature, vol. 597(7875), pages 230-234, September.
    14. Krarti, Moncef & Aldubyan, Mohammad & Williams, Eric, 2020. "Residential building stock model for evaluating energy retrofit programs in Saudi Arabia," Energy, Elsevier, vol. 195(C).
    15. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    16. Linfeng Xu & Xuan Liu & De Tong & Zhixin Liu & Lirong Yin & Wenfeng Zheng, 2022. "Forecasting Urban Land Use Change Based on Cellular Automata and the PLUS Model," Land, MDPI, vol. 11(5), pages 1-16, April.
    17. Stergios Emmanouil & Jason Philhower & Sophie Macdonald & Fahad Khan Khadim & Meijian Yang & Ezana Atsbeha & Himaja Nagireddy & Natalie Roach & Elizabeth Holzer & Emmanouil N. Anagnostou, 2021. "A Comprehensive Approach to the Design of a Renewable Energy Microgrid for Rural Ethiopia: The Technical and Social Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    18. Li, Qiong & Meng, Qinglin & Cai, Jiejin & Yoshino, Hiroshi & Mochida, Akashi, 2009. "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, Elsevier, vol. 86(10), pages 2249-2256, October.
    19. Vernay, Anne-Lorène & Sebi, Carine, 2020. "Energy communities and their ecosystems: A comparison of France and the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    20. Wang, Han & Hou, Kai & Zhao, Junbo & Yu, Xiaodan & Jia, Hongjie & Mu, Yunfei, 2022. "Planning-Oriented resilience assessment and enhancement of integrated electricity-gas system considering multi-type natural disasters," Applied Energy, Elsevier, vol. 315(C).
    21. Dan Li & Delan Zhu & Ruixin Wang & Maosheng Ge & Shoujun Wu & Yaohui Cai, 2020. "Sizing Optimization and Experimental Verification of a Hybrid Generation Water Pumping System in a Greenhouse," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, May.
    22. Hasanov, Fakhri J. & Shannak, Sa'd, 2020. "Electricity incentives for agriculture in Saudi Arabia. Is that relevant to remove them?," Energy Policy, Elsevier, vol. 144(C).
    23. Salaheddine Soummane & F. Ghersi, 2022. "Projecting Saudi sectoral electricity demand in 2030 using a computable general equilibrium model," Post-Print hal-03500916, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neska, Ewa & Kowalska-Pyzalska, Anna, 2022. "Conceptual design of energy market topologies for communities and their practical applications in EU: A comparison of three case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Vernay, Anne-Lorène & Olsthoorn, Mark & Sebi, Carine & Gauthier, Caroline, 2023. "The identity trap of community renewable energy in France," Energy Policy, Elsevier, vol. 177(C).
    3. Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & Sanseverino, Eleonora Riva & Sciumè, Giuseppe & Vasile, Antony, 2021. "Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Vernay, Anne-Lorène & Sebi, Carine & Arroyo, Fabrice, 2023. "Energy community business models and their impact on the energy transition: Lessons learnt from France," Energy Policy, Elsevier, vol. 175(C).
    5. Elena Tarpani & Cristina Piselli & Claudia Fabiani & Ilaria Pigliautile & Eelke J. Kingma & Benedetta Pioppi & Anna Laura Pisello, 2022. "Energy Communities Implementation in the European Union: Case Studies from Pioneer and Laggard Countries," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    6. Kemi Adeyeye & John Gallagher & Aonghus McNabola & Helena M. Ramos & Paul Coughlan, 2021. "Socio-Technical Viability Framework for Micro Hydropower in Group Water-Energy Schemes," Energies, MDPI, vol. 14(14), pages 1-21, July.
    7. A.S.M. Mominul Hasan, 2020. "Electric Rickshaw Charging Stations as Distributed Energy Storages for Integrating Intermittent Renewable Energy Sources: A Case of Bangladesh," Energies, MDPI, vol. 13(22), pages 1-28, November.
    8. Fahad R. Albogamy, 2022. "Optimal Energy Consumption Scheduler Considering Real-Time Pricing Scheme for Energy Optimization in Smart Microgrid," Energies, MDPI, vol. 15(21), pages 1-31, October.
    9. Man Zhou & Uliana Pysmenna & Oleksandra Kubatko & Volodymyr Voloshchuk & Iryna Sotnyk & Galyna Trypolska, 2023. "Support for Household Prosumers in the Early Stages of Power Market Decentralization in Ukraine," Energies, MDPI, vol. 16(17), pages 1-15, September.
    10. Wainer, A. & Petrovics, D. & van der Grijp, N., 2022. "The grid access of energy communities a comparison of power grid governance in France and Germany," Energy Policy, Elsevier, vol. 170(C).
    11. Sebi, Carine & Vernay, Anne-Lorène, 2020. "Community renewable energy in France: The state of development and the way forward," Energy Policy, Elsevier, vol. 147(C).
    12. Iskandarova, Marfuga & Vernay, Anne-Lorène & Musiolik, Jörg & Müller, Leticia & Sovacool, Benjamin K., 2022. "Tangled transitions: Exploring the emergence of local electricity exchange in France, Switzerland and Great Britain," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    13. Maria Alessandra Ancona & Francesco Baldi & Lisa Branchini & Andrea De Pascale & Federico Gianaroli & Francesco Melino & Mattia Ricci, 2022. "Comparative Analysis of Renewable Energy Community Designs for District Heating Networks: Case Study of Corticella (Italy)," Energies, MDPI, vol. 15(14), pages 1-18, July.
    14. Nadia Jahanafroozi & Saman Shokrpour & Fatemeh Nejati & Omrane Benjeddou & Mohammad Worya Khordehbinan & Afshin Marani & Moncef L. Nehdi, 2022. "New Heuristic Methods for Sustainable Energy Performance Analysis of HVAC Systems," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    15. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    16. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    17. Wahhaj Ahmed & Ayman Alazazmeh & Muhammad Asif, 2022. "Energy and Water Saving Potential in Commercial Buildings: A Retrofit Case Study," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    18. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    19. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Shannak, Sa'd, 2022. "Optimizing dynamics of water-energy-food nexus in a desert climate," Energy Policy, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13792-:d:951914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.