IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9172-d1165144.html
   My bibliography  Save this article

A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices

Author

Listed:
  • Troy Malatesta

    (Curtin University Sustainability Policy Institute, School of Design and Built Environment, Curtin University, Building 418 Level 4, Kent St., Bentley, WA 6102, Australia)

  • Gregory M. Morrison

    (Curtin University Sustainability Policy Institute, School of Design and Built Environment, Curtin University, Building 418 Level 4, Kent St., Bentley, WA 6102, Australia)

  • Jessica K. Breadsell

    (Curtin University Sustainability Policy Institute, School of Design and Built Environment, Curtin University, Building 418 Level 4, Kent St., Bentley, WA 6102, Australia)

  • Christine Eon

    (Curtin University Sustainability Policy Institute, School of Design and Built Environment, Curtin University, Building 418 Level 4, Kent St., Bentley, WA 6102, Australia)

Abstract

The development of renewable energy systems offers a potential solution to energy consumption in the residential sector. These systems face many barriers and challenges regarding the nature of home energy demand and behaviors of household occupants. These barriers are discussed in innovation theory, which describes how people assess new technologies. A systematic literature review of 123 journals was conducted to explore the interrelationship between energy systems, home energy demand and occupant practices. This identified key gaps in the literature and important takeaways from past research showing the limitations of renewable energy systems in integrating into everyday lives. There are numerous personal and social barriers that inhibit behavior change and limit the penetration of renewable systems. Additionally, the development of social norms and institutional rhythms have resulted in people living in a lock-in lifestyle, with limited flexibility for change. This review discusses the role of technology, consumers and policies, and how they must all interact to create a sustainable and effective energy solution to this climate emergency. The next step is to reevaluate the design of home automation and energy management systems to consider the impacts of different lifestyles and routines.

Suggested Citation

  • Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9172-:d:1165144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    2. Fagerberg, Jan & Verspagen, Bart, 2009. "Innovation studies--The emerging structure of a new scientific field," Research Policy, Elsevier, vol. 38(2), pages 218-233, March.
    3. Joshua Byrne & Mike Mouritz & Mark Taylor & Jessica K. Breadsell, 2020. "East Village at Knutsford: A Case Study in Sustainable Urbanism," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    4. Michelsen, Carl Christian & Madlener, Reinhard, 2012. "Homeowners' preferences for adopting innovative residential heating systems: A discrete choice analysis for Germany," Energy Economics, Elsevier, vol. 34(5), pages 1271-1283.
    5. Belaïd, Fateh & Joumni, Haitham, 2020. "Behavioral attitudes towards energy saving: Empirical evidence from France," Energy Policy, Elsevier, vol. 140(C).
    6. Kazui Yoshida & Hom B. Rijal & Kazuaki Bogaki & Ayako Mikami & Hiroto Abe, 2021. "Field Study on Energy-Saving Behaviour and Patterns of Air-Conditioning Use in a Condominium," Energies, MDPI, vol. 14(24), pages 1-19, December.
    7. Klaassen, E.A.M. & Kobus, C.B.A. & Frunt, J. & Slootweg, J.G., 2016. "Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 1065-1074.
    8. Justyna Żywiołek & Joanna Rosak-Szyrocka & Maciej Mrowiec, 2021. "Knowledge Management in Households about Energy Saving as Part of the Awareness of Sustainable Development," Energies, MDPI, vol. 14(24), pages 1-14, December.
    9. Soyoung Yoo & Jiyong Eom & Ingoo Han, 2020. "Factors Driving Consumer Involvement in Energy Consumption and Energy-Efficient Purchasing Behavior: Evidence from Korean Residential Buildings," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    10. Samuel Brody & Himanshu Grover & Arnold Vedlitz, 2012. "Examining the willingness of Americans to alter behaviour to mitigate climate change," Climate Policy, Taylor & Francis Journals, vol. 12(1), pages 1-22, January.
    11. Magdalena Jaciow & Edyta Rudawska & Adam Sagan & Jolanta Tkaczyk & Robert Wolny, 2022. "The Influence of Environmental Awareness on Responsible Energy Consumption—The Case of Households in Poland," Energies, MDPI, vol. 15(15), pages 1-15, July.
    12. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    13. Jessica K. Breadsell & Christine Eon & Gregory M. Morrison, 2019. "Understanding Resource Consumption in the Home, Community and Society through Behaviour and Social Practice Theories," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    14. Innocent, Morgane & Francois-Lecompte, Agnes & Roudaut, Nolwenn, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    15. Finn, P. & O’Connell, M. & Fitzpatrick, C., 2013. "Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction," Applied Energy, Elsevier, vol. 101(C), pages 678-685.
    16. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.
    17. Obinna, Uchechi & Joore, Peter & Wauben, Linda & Reinders, Angele, 2017. "Comparison of two residential Smart Grid pilots in the Netherlands and in the USA, focusing on energy performance and user experiences," Applied Energy, Elsevier, vol. 191(C), pages 264-275.
    18. Omar Alrawi & I. Safak Bayram & Sami G. Al-Ghamdi & Muammer Koc, 2019. "High-Resolution Household Load Profiling and Evaluation of Rooftop PV Systems in Selected Houses in Qatar," Energies, MDPI, vol. 12(20), pages 1-25, October.
    19. Francisco, Abigail & Taylor, John E., 2019. "Understanding citizen perspectives on open urban energy data through the development and testing of a community energy feedback system," Applied Energy, Elsevier, vol. 256(C).
    20. Sanneke Kloppenburg & Robin Smale & Nick Verkade, 2019. "Technologies of Engagement: How Battery Storage Technologies Shape Householder Participation in Energy Transitions," Energies, MDPI, vol. 12(22), pages 1-15, November.
    21. Nilsson, Andreas & Bergstad, Cecilia Jakobsson & Thuvander, Liane & Andersson, David & Andersson, Kristin & Meiling, Pär, 2014. "Effects of continuous feedback on households’ electricity consumption: Potentials and barriers," Applied Energy, Elsevier, vol. 122(C), pages 17-23.
    22. Marini, Dashamir & Buswell, Richard. A. & Hopfe, Christina. J., 2019. "Sizing domestic air-source heat pump systems with thermal storage under varying electrical load shifting strategies," Applied Energy, Elsevier, vol. 255(C).
    23. Ellegård, Kajsa & Palm, Jenny, 2011. "Visualizing energy consumption activities as a tool for making everyday life more sustainable," Applied Energy, Elsevier, vol. 88(5), pages 1920-1926, May.
    24. Sovacool, Benjamin K. & Griffiths, Steve, 2020. "The cultural barriers to a low-carbon future: A review of six mobility and energy transitions across 28 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    25. Martin Hand & Elizabeth Shove & Dale Southerton, 2005. "Explaining Showering: A Discussion of the Material, Conventional, and Temporal Dimensions of Practice," Sociological Research Online, , vol. 10(2), pages 101-113, July.
    26. Sara Torabi Moghadam & Maria Valentina Di Nicoli & Santiago Manzo & Patrizia Lombardi, 2020. "Mainstreaming Energy Communities in the Transition to a Low-Carbon Future: A Methodological Approach," Energies, MDPI, vol. 13(7), pages 1-25, April.
    27. Francisco, Abigail & Truong, Hanh & Khosrowpour, Ardalan & Taylor, John E. & Mohammadi, Neda, 2018. "Occupant perceptions of building information model-based energy visualizations in eco-feedback systems," Applied Energy, Elsevier, vol. 221(C), pages 220-228.
    28. Jessica K. Breadsell & Joshua J. Byrne & Gregory M. Morrison, 2019. "Household Energy and Water Practices Change Post-Occupancy in an Australian Low-Carbon Development," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    29. Dütschke, Elisabeth & Paetz, Alexandra-Gwyn, 2013. "Dynamic electricity pricing—Which programs do consumers prefer?," Energy Policy, Elsevier, vol. 59(C), pages 226-234.
    30. Levesque, Antoine & Pietzcker, Robert C. & Luderer, Gunnar, 2019. "Halving energy demand from buildings: The impact of low consumption practices," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 253-266.
    31. Cem Keskin & M. Pınar Mengüç, 2018. "On Occupant Behavior and Innovation Studies Towards High Performance Buildings: A Transdisciplinary Approach," Sustainability, MDPI, vol. 10(10), pages 1-33, October.
    32. Nick Verkade & Johanna Höffken, 2019. "Collective Energy Practices: A Practice-Based Approach to Civic Energy Communities and the Energy System," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    33. Sardianou, Eleni, 2007. "Estimating energy conservation patterns of Greek households," Energy Policy, Elsevier, vol. 35(7), pages 3778-3791, July.
    34. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    35. Elena G. Dascalaki & Poulia A. Argiropoulou & Constantinos A. Balaras & Kalliopi G. Droutsa & Simon Kontoyiannidis, 2020. "Benchmarks for Embodied and Operational Energy Assessment of Hellenic Single-Family Houses," Energies, MDPI, vol. 13(17), pages 1-36, August.
    36. Lutzenhiser, Loren, 1992. "A cultural model of household energy consumption," Energy, Elsevier, vol. 17(1), pages 47-60.
    37. Xuan Liu & Qiancheng Wang & Hsi-Hsien Wei & Hung-Lin Chi & Yaotian Ma & Izzy Yi Jian, 2020. "Psychological and Demographic Factors Affecting Household Energy-Saving Intentions: A TPB-Based Study in Northwest China," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    38. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    39. Mihailova, Darja & Schubert, Iljana & Martinez-Cruz, Adan L. & Hearn, Adam X. & Sohre, Annika, 2022. "Preferences for configurations of Positive Energy Districts – Insights from a discrete choice experiment on Swiss households," Energy Policy, Elsevier, vol. 163(C).
    40. Veronika Andrea & Stilianos Tampakis & Paraskevi Karanikola & Maria Georgopoulou, 2020. "The Citizens’ Views on Adaptation to Bioclimatic Housing Design: Case Study from Greece," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    41. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    42. Neves, Joana & Oliveira, Tiago, 2021. "Understanding energy-efficient heating appliance behavior change: The moderating impact of the green self-identity," Energy, Elsevier, vol. 225(C).
    43. Violeta Mihaela Dincă & Mihail Busu & Zoltan Nagy-Bege, 2022. "Determinants with Impact on Romanian Consumers’ Energy-Saving Habits," Energies, MDPI, vol. 15(11), pages 1-18, June.
    44. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    45. Alessandro Cannavale & Ubaldo Ayr & Francesco Fiorito & Francesco Martellotta, 2020. "Smart Electrochromic Windows to Enhance Building Energy Efficiency and Visual Comfort," Energies, MDPI, vol. 13(6), pages 1-17, March.
    46. Watson, Matt, 2012. "How theories of practice can inform transition to a decarbonised transport system," Journal of Transport Geography, Elsevier, vol. 24(C), pages 488-496.
    47. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    48. Imran Hossain & Maria Fekete-Farkas & Md. Nekmahmud, 2022. "Purchase Behavior of Energy-Efficient Appliances Contribute to Sustainable Energy Consumption in Developing Country: Moral Norms Extension of the Theory of Planned Behavior," Energies, MDPI, vol. 15(13), pages 1-20, June.
    49. Sommerfeldt, Nelson & Lemoine, Ida & Madani, Hatef, 2022. "Hide and seek: The supply and demand of information for household solar photovoltaic investment," Energy Policy, Elsevier, vol. 161(C).
    50. Gyamfi, Samuel & Krumdieck, Susan, 2011. "Price, environment and security: Exploring multi-modal motivation in voluntary residential peak demand response," Energy Policy, Elsevier, vol. 39(5), pages 2993-3004, May.
    51. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    52. Nie, Hongguang & Zhou, Ting & Lu, Haiyan & Huang, Shupeng, 2021. "Evaluation of the efficiency of Chinese energy-saving household appliance subsidy policy: An economic benefit perspective," Energy Policy, Elsevier, vol. 149(C).
    53. Gallego-Castillo, Cristobal & Heleno, Miguel & Victoria, Marta, 2021. "Self-consumption for energy communities in Spain: A regional analysis under the new legal framework," Energy Policy, Elsevier, vol. 150(C).
    54. Hafner, Rebecca J. & Elmes, David & Read, Daniel, 2019. "Promoting behavioural change to reduce thermal energy demand in households: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 205-214.
    55. Ruokamo, Enni & Meriläinen, Teemu & Karhinen, Santtu & Räihä, Jouni & Suur-Uski, Päivi & Timonen, Leila & Svento, Rauli, 2022. "The effect of information nudges on energy saving: Observations from a randomized field experiment in Finland," Energy Policy, Elsevier, vol. 161(C).
    56. Anderson, Ben & Torriti, Jacopo, 2018. "Explaining shifts in UK electricity demand using time use data from 1974 to 2014," Energy Policy, Elsevier, vol. 123(C), pages 544-557.
    57. Justyna Chodkowska-Miszczuk & Maria Kola-Bezka & Agata Lewandowska & Stanislav Martinát, 2021. "Local Communities’ Energy Literacy as a Way to Rural Resilience—An Insight from Inner Peripheries," Energies, MDPI, vol. 14(9), pages 1-18, April.
    58. Liu, Wenling & Spaargaren, Gert & Heerink, Nico & Mol, Arthur P.J. & Wang, Can, 2013. "Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development," Energy Policy, Elsevier, vol. 55(C), pages 128-138.
    59. Gill, Nicholas & Osman, Peter & Head, Lesley & Voyer, Michelle & Harada, Theresa & Waitt, Gordon & Gibson, Chris, 2015. "Looking beyond installation: Why households struggle to make the most of solar hot water systems," Energy Policy, Elsevier, vol. 87(C), pages 83-94.
    60. Kajsa Ellegård & Jenny Palm, 2015. "Who Is Behaving? Consequences for Energy Policy of Concept Confusion," Energies, MDPI, vol. 8(8), pages 1-20, July.
    61. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    62. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    63. Zofia Gródek-Szostak & Mateusz Malinowski & Marcin Suder & Klaudia Kwiecień & Stanisław Bodziacki & Magdalena D. Vaverková & Alżbeta Maxianová & Anna Krakowiak-Bal & Urszula Ziemiańczyk & Hrihorii Usk, 2021. "Energy Conservation Behaviors and Awareness of Polish, Czech and Ukrainian Students: A Case Study," Energies, MDPI, vol. 14(18), pages 1-22, September.
    64. Alberto Cerezo-Narváez & María-José Bastante-Ceca & José-María Piñero-Vilela, 2021. "Economic and Environmental Assessment on Implementing Solar Renewable Energy Systems in Spanish Residential Homes," Energies, MDPI, vol. 14(14), pages 1-39, July.
    65. Mills, Bradford F. & Schleich, Joachim, 2009. "Profits or preferences? Assessing the adoption of residential solar thermal technologies," Energy Policy, Elsevier, vol. 37(10), pages 4145-4154, October.
    66. Yanqiu Cui & Ninghan Sun & Hongbin Cai & Simeng Li, 2020. "Indoor Temperature Improvement and Energy-Saving Renovations in Rural Houses of China’s Cold Region—A Case Study of Shandong Province," Energies, MDPI, vol. 13(4), pages 1-26, February.
    67. Khalid Alrashoud & Koji Tokimatsu, 2019. "Factors Influencing Social Perception of Residential Solar Photovoltaic Systems in Saudi Arabia," Sustainability, MDPI, vol. 11(19), pages 1-22, September.
    68. Ikram Merini & Angel Molina-García & M. Socorro García-Cascales & Mustapha Mahdaoui & Mohamed Ahachad, 2020. "Analysis and Comparison of Energy Efficiency Code Requirements for Buildings: A Morocco–Spain Case Study," Energies, MDPI, vol. 13(22), pages 1-21, November.
    69. Niamir, Leila & Filatova, Tatiana & Voinov, Alexey & Bressers, Hans, 2018. "Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes," Energy Policy, Elsevier, vol. 118(C), pages 325-345.
    70. Peter Boait & J. Richard Snape & Robin Morris & Jo Hamilton & Sarah Darby, 2019. "The Practice and Potential of Renewable Energy Localisation: Results from a UK Field Trial," Sustainability, MDPI, vol. 11(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eva Schito & Elena Lucchi, 2023. "Advances in the Optimization of Energy Use in Buildings," Sustainability, MDPI, vol. 15(18), pages 1-3, September.
    2. Kristia Kristia & Mohammad Fazle Rabbi, 2023. "Exploring the Synergy of Renewable Energy in the Circular Economy Framework: A Bibliometric Study," Sustainability, MDPI, vol. 15(17), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olsthoorn, Mark & Schleich, Joachim & Faure, Corinne, 2019. "Exploring the diffusion of low-energy houses: An empirical study in the European Union," Energy Policy, Elsevier, vol. 129(C), pages 1382-1393.
    2. Laurie Buys & Desley Vine & Gerard Ledwich & John Bell & Kerrie Mengersen & Peter Morris & Jim Lewis, 2015. "A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-20, March.
    3. Henningsen, Geraldine & Wiese, Catharina, 2019. "Do Household Characteristics Really Matter? A Meta-Analysis on the Determinants of Households’ Energy-Efficiency Investments," MPRA Paper 101701, University Library of Munich, Germany.
    4. Elisha R. Frederiks & Karen Stenner & Elizabeth V. Hobman, 2015. "The Socio-Demographic and Psychological Predictors of Residential Energy Consumption: A Comprehensive Review," Energies, MDPI, vol. 8(1), pages 1-37, January.
    5. Klaassen, E.A.M. & Kobus, C.B.A. & Frunt, J. & Slootweg, J.G., 2016. "Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 1065-1074.
    6. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    8. Komatsu, Hidenori & Nishio, Ken-ichiro, 2015. "An experimental study on motivational change for electricity conservation by normative messages," Applied Energy, Elsevier, vol. 158(C), pages 35-43.
    9. Hobman, Elizabeth V. & Frederiks, Elisha R. & Stenner, Karen & Meikle, Sarah, 2016. "Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 455-467.
    10. Spyridaki, Niki-Artemis & Stavrakas, Vassilis & Dendramis, Yiannis & Flamos, Alexandros, 2020. "Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector," Energy Policy, Elsevier, vol. 140(C).
    11. Jing Liang & Yueming Qiu & Poornima Padmanabhan, 2017. "Consumers’ Attitudes towards Surcharges on Distributed Renewable Energy Generation and Energy Efficiency Programs," Sustainability, MDPI, vol. 9(8), pages 1-23, August.
    12. Dalia Streimikiene & Tomas Balezentis & Irena Alebaite, 2020. "Climate Change Mitigation in Households between Market Failures and Psychological Barriers," Energies, MDPI, vol. 13(11), pages 1-21, June.
    13. Kinga Hoffmann-Burdzińska & Agata Stolecka-Makowska & Olaf Flak & Marcin Lipowski & Mariusz Łapczyński, 2022. "Consumers’ Social Responsibility in the Process of Energy Consumption—The Case of Poland," Energies, MDPI, vol. 15(14), pages 1-17, July.
    14. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    15. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    16. Schleich, Joachim & Gassmann, Xavier & Meissner, Thomas & Faure, Corinne, 2023. "Making the factors underlying the implicit discount rate tangible," Energy Policy, Elsevier, vol. 177(C).
    17. Troy Malatesta & Jessica K. Breadsell, 2022. "Identifying Home System of Practices for Energy Use with K-Means Clustering Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    18. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    19. Ante Busic-Sontic & Franz Fuerst, 2017. "The Personality Profiles of Early Adopters of Energy-Efficient Technology," SOEPpapers on Multidisciplinary Panel Data Research 924, DIW Berlin, The German Socio-Economic Panel (SOEP).
    20. Holly Berman & Rachael Shwom & Cara Cuite, 2019. "Becoming FEW Conscious: A Conceptual Typology of Household Behavior Change Interventions Targeting the Food-Energy-Water (FEW) Nexus," Sustainability, MDPI, vol. 11(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9172-:d:1165144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.