IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5979-d445912.html
   My bibliography  Save this article

Analysis and Comparison of Energy Efficiency Code Requirements for Buildings: A Morocco–Spain Case Study

Author

Listed:
  • Ikram Merini

    (Department of Electronics, Comp. Architecture and Project Engineering, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
    These authors contributed equally to this work.)

  • Angel Molina-García

    (Department of Automatics, Electrical Eng. and Electronic Technology, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
    These authors contributed equally to this work.)

  • M. Socorro García-Cascales

    (Department of Electronics, Comp. Architecture and Project Engineering, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
    These authors contributed equally to this work.)

  • Mustapha Mahdaoui

    (Faculty of Sciences and Techniques, Abdelmalek Essaadi University, B.P. 416 Tangier, Morocco
    These authors contributed equally to this work.)

  • Mohamed Ahachad

    (Faculty of Sciences and Techniques, Abdelmalek Essaadi University, B.P. 416 Tangier, Morocco
    These authors contributed equally to this work.)

Abstract

The trend in energy consumption, with a particular focus on heating and cooling demand, is an issue that is relevant to the promotion of new energy policies and more efficient energy systems. Moreover, heating and cooling energy demand is expected to rise in the next several decades, mainly due to climate change as well as increasing incomes in developing countries. In this context, the building sector is currently a relevant energy-intensive economic sector in Morocco; it accounts for 33% of the country’s total energy demand (as the sector with the second highest energy demand, after the transport sector), with the residential sector accounting for 25% and the tertiary sector accounting for 8%. Aiming to reduce energy dependence and promote sustainable development, the Moroccan government recently issued a comprehensive plan to increase the share of renewables and improve energy efficiency. This strategy includes novel thermal building regulations promoted by the Moroccan Agency for Energy Efficiency. This paper analyzes the thermal behavior and heating-cooling energy demand of a residential building located in Tangier (Morocco) as a case example, based on the country’s new thermal regulations and considering specific climatological conditions. A comparison with common Moroccan residential buildings as well as with those in nearby countries with similar meteorological conditions but significant differences in terms of energy demand regulation and requirements, such as Spain, is also included. Simulations were carried out using the DesingBuilder and EnergyPlus Software packages. According to the results, the last building thermal regulation requirements in Morocco need to be revised and extended in order to achieve the energy efficiency objectives established by the Moroccan government for 2030.

Suggested Citation

  • Ikram Merini & Angel Molina-García & M. Socorro García-Cascales & Mustapha Mahdaoui & Mohamed Ahachad, 2020. "Analysis and Comparison of Energy Efficiency Code Requirements for Buildings: A Morocco–Spain Case Study," Energies, MDPI, vol. 13(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5979-:d:445912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jiangfeng & Dai, Yiping & Gao, Lin & Ma, Shaolin, 2009. "A new combined cooling, heating and power system driven by solar energy," Renewable Energy, Elsevier, vol. 34(12), pages 2780-2788.
    2. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    3. Pilar Mercader-Moyano & Paula M. Esquivias & Radu Muntean, 2020. "Eco-Efficient Analysis of a Refurbishment Proposal for a Social Housing," Sustainability, MDPI, vol. 12(17), pages 1-31, August.
    4. Maria-Mar Fernandez-Antolin & José-Manuel del-Río & Roberto-Alonso Gonzalez-Lezcano, 2019. "Influence of Solar Reflectance and Renewable Energies on Residential Heating and Cooling Demand in Sustainable Architecture: A Case Study in Different Climate Zones in Spain Considering Their Urban Co," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    5. Blázquez, Teresa & Ferrari, Simone & Suárez, Rafael & Sendra, Juan José, 2019. "Adaptive approach-based assessment of a heritage residential complex in southern Spain for improving comfort and energy efficiency through passive strategies: A study based on a monitored flat," Energy, Elsevier, vol. 181(C), pages 504-520.
    6. Fumo, Nelson & Mago, Pedro J. & Chamra, Louay M., 2009. "Analysis of cooling, heating, and power systems based on site energy consumption," Applied Energy, Elsevier, vol. 86(6), pages 928-932, June.
    7. De Rosa, Mattia & Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach," Applied Energy, Elsevier, vol. 128(C), pages 217-229.
    8. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    9. Peci López, F. & Ruiz de Adana Santiago, M., 2015. "Sensitivity study of an opaque ventilated façade in the winter season in different climate zones in Spain," Renewable Energy, Elsevier, vol. 75(C), pages 524-533.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    2. Chiemi Iba & Shuichi Hokoi, 2022. "Traditional Town Houses in Kyoto, Japan: Present and Future," Energies, MDPI, vol. 15(5), pages 1-19, March.
    3. Mhaijiba Belhous & Mustapha Boumhaout & Soufiane Oukach & Hassan Hamdi, 2023. "Effect of a Material Based on Date Palm Fibers on the Thermal Behavior of a Residential Building in the Atlantic Climate of Morocco," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    4. Muhannad Haj Hussein & Sameh Monna & Ramez Abdallah & Adel Juaidi & Aiman Albatayneh, 2022. "Improving the Thermal Performance of Building Envelopes: An Approach to Enhancing the Building Energy Efficiency Code," Sustainability, MDPI, vol. 14(23), pages 1-19, December.
    5. Najat El Asri & Nawal Abdou & Mohammed Mharzi & Abdelmajid Maghnouj, 2023. "Moroccan Public Buildings and the RTCM: Insights into Compliance, Energy Performance, and Regulation Improvement," Energies, MDPI, vol. 16(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    2. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    3. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    4. Fumo, Nelson & Chamra, Louay M., 2010. "Analysis of combined cooling, heating, and power systems based on source primary energy consumption," Applied Energy, Elsevier, vol. 87(6), pages 2023-2030, June.
    5. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "Industrial combined heat and power (CHP) planning: Development of a methodology and application in Greece," Applied Energy, Elsevier, vol. 88(5), pages 1519-1531, May.
    6. Wencong Huang & Yufang Chang & Youxin Yuan, 2019. "Complementary Configuration and Optimal Energy Flow of CCHP-ORC Systems Using a Matrix Modeling Approach," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    7. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    8. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    9. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Omar, M.N. & Samak, A.A. & Keshek, M.H. & Elsisi, S.F., 2020. "Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy," Renewable Energy, Elsevier, vol. 159(C), pages 920-928.
    11. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    12. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    13. Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
    14. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    15. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    16. Shou, Chunhui & Luo, Zhongyang & Wang, Tao & Shen, Weidong & Rosengarten, Gary & Wei, Wei & Wang, Cheng & Ni, Mingjiang & Cen, Kefa, 2012. "Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems," Applied Energy, Elsevier, vol. 92(C), pages 298-306.
    17. Li, Jing & Li, Pengcheng & Pei, Gang & Alvi, Jahan Zeb & Ji, Jie, 2016. "Analysis of a novel solar electricity generation system using cascade Rankine cycle and steam screw expander," Applied Energy, Elsevier, vol. 165(C), pages 627-638.
    18. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    19. Rezaie, Behnaz & Reddy, Bale V. & Rosen, Marc A., 2015. "Exergy analysis of thermal energy storage in a district energy application," Renewable Energy, Elsevier, vol. 74(C), pages 848-854.
    20. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5979-:d:445912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.