IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4183-d592171.html
   My bibliography  Save this article

Economic and Environmental Assessment on Implementing Solar Renewable Energy Systems in Spanish Residential Homes

Author

Listed:
  • Alberto Cerezo-Narváez

    (School of Engineering, University of Cadiz, 11519 Puerto Real, Spain)

  • María-José Bastante-Ceca

    (Project Management, Innovation and Sustainability Research Center (PRINS), Universitat Politècnica de València, 46022 València, Spain)

  • José-María Piñero-Vilela

    (School of Engineering, University of Cadiz, 11519 Puerto Real, Spain)

Abstract

In Europe, buildings are responsible for more than one third of the total final energy demands and greenhouse gas emissions. In the last twenty years, the European Union has published a succession of energy performance of building directives to define and ensure the fulfilment of a series of objectives regarding greenhouse gas emissions, energy consumption, energy efficiency and energy generation from renewable sources in buildings. For its part, Spain is adapting its legal framework, transposing these directives with the aim of achieving greater energy efficiency and sustainability for buildings. Under this context, an energy, economic and environmental assessment is performed to analyze the impact of these regulatory changes on a single-family home including a photovoltaic installation for self-consumption with surpluses and/or a solar thermal installation for domestic hot water supply, located in each one of the eight thousand one hundred thirty-one municipalities that make up Spain. The energy behavior of the original house is compared with that obtained after it is updated with these new facilities. The transient system simulation tool is used for the energy study. The results show that the European objectives are far exceeded. The energy savings achieved range from 67% to 126%, carbon dioxide emissions decrease by 42% to 100% and energy bills are reduced in cost by 32% to 81%. The findings of this work can be used by policymakers as guidelines for the development of national strategic plans and financial incentives for the promotion of small-scale residential photovoltaic and solar thermal applications, as well as by designers, supervisors, managers and developers to include them in their projects.

Suggested Citation

  • Alberto Cerezo-Narváez & María-José Bastante-Ceca & José-María Piñero-Vilela, 2021. "Economic and Environmental Assessment on Implementing Solar Renewable Energy Systems in Spanish Residential Homes," Energies, MDPI, vol. 14(14), pages 1-39, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4183-:d:592171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Horan & Mark B. Luther & Hong Xian Li, 2021. "Guidance on Implementing Renewable Energy Systems in Australian Homes," Energies, MDPI, vol. 14(9), pages 1-24, May.
    2. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & López-González, Luis M. & Olasolo-Alonso, Pablo, 2018. "Environmental and energy impact of the EPBD in residential buildings in hot and temperate Mediterranean zones: The case of Spain," Energy, Elsevier, vol. 161(C), pages 618-634.
    3. Carmen De la Cruz-Lovera & Alberto-Jesús Perea-Moreno & José-Luis De la Cruz-Fernández & José Antonio Alvarez-Bermejo & Francisco Manzano-Agugliaro, 2017. "Worldwide Research on Energy Efficiency and Sustainability in Public Buildings," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    4. Salvalai, Graziano & Masera, Gabriele & Sesana, Marta Maria, 2015. "Italian local codes for energy efficiency of buildings: Theoretical definition and experimental application to a residential case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1245-1259.
    5. Teresa Soto & Teresa Escrig & Begoña Serrano-Lanzarote & Núria Matarredona Desantes, 2020. "An Approach to Environmental Criteria in Public Procurement for the Renovation of Buildings in Spain," Sustainability, MDPI, vol. 12(18), pages 1-41, September.
    6. Arcos-Vargas, Angel & Cansino, José M. & Román-Collado, Rocío, 2018. "Economic and environmental analysis of a residential PV system: A profitable contribution to the Paris agreement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1024-1035.
    7. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
    8. Duarte, Rosa & Sánchez-Chóliz, Julio & Sarasa, Cristina, 2018. "Consumer-side actions in a low-carbon economy: A dynamic CGE analysis for Spain," Energy Policy, Elsevier, vol. 118(C), pages 199-210.
    9. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Francisco J. Rey-Martínez, 2018. "Energy Analysis at a Near Zero Energy Building. A Case-Study in Spain," Energies, MDPI, vol. 11(4), pages 1-19, April.
    10. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    11. Beccali, Marco & Cellura, Maurizio & Fontana, Mario & Longo, Sonia & Mistretta, Marina, 2013. "Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 283-293.
    12. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.
    13. Guido Ala & Gabriella Di Filippo & Fabio Viola & Graziella Giglia & Antonino Imburgia & Pietro Romano & Vincenzo Castiglia & Filippo Pellitteri & Giuseppe Schettino & Rosario Miceli, 2020. "Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    14. De Luca, Giovanna & Ballarini, Ilaria & Lorenzati, Alice & Corrado, Vincenzo, 2020. "Renovation of a social house into a NZEB: Use of renewable energy sources and economic implications," Renewable Energy, Elsevier, vol. 159(C), pages 356-370.
    15. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    16. Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).
    17. Garcia Latorre, Francisco Javier & Quintana, Jose Juan & de la Nuez, Ignacio, 2019. "Technical and economic evaluation of the integration of a wind-hydro system in El Hierro island," Renewable Energy, Elsevier, vol. 134(C), pages 186-193.
    18. Maria Milousi & Manolis Souliotis & George Arampatzis & Spiros Papaefthimiou, 2019. "Evaluating the Environmental Performance of Solar Energy Systems Through a Combined Life Cycle Assessment and Cost Analysis," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    19. Valeria Palomba & Emiliano Borri & Antonios Charalampidis & Andrea Frazzica & Sotirios Karellas & Luisa F. Cabeza, 2021. "An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings," Energies, MDPI, vol. 14(4), pages 1-25, February.
    20. Vincenzo Muteri & Maurizio Cellura & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Marina Mistretta & Maria Laura Parisi, 2020. "Review on Life Cycle Assessment of Solar Photovoltaic Panels," Energies, MDPI, vol. 13(1), pages 1-38, January.
    21. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    2. Violeta Motuzienė & Kęstutis Čiuprinskas & Artur Rogoža & Vilūnė Lapinskienė, 2022. "A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies," Energies, MDPI, vol. 15(22), pages 1-26, November.
    3. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & González-Caballín, Juan M. & Carpio, Manuel, 2023. "Towards nearly zero-energy residential buildings in Mediterranean countries: The implementation of the Energy Performance of Buildings Directive 2018 in Spain," Energy, Elsevier, vol. 276(C).
    4. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & López-González, Luis M. & Olasolo-Alonso, Pablo, 2019. "Towards nearly zero-energy buildings in Mediterranean countries: Energy Performance of Buildings Directive evolution and the energy rehabilitation challenge in the Spanish residential sector," Energy, Elsevier, vol. 176(C), pages 335-352.
    5. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    6. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    7. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    8. Scarlat, Nicolae & Prussi, Matteo & Padella, Monica, 2022. "Quantification of the carbon intensity of electricity produced and used in Europe," Applied Energy, Elsevier, vol. 305(C).
    9. Modeste, Kameni Nematchoua & Mempouo, Blaise & René, Tchinda & Costa, Ángel M. & Orosa, José A. & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson, 2015. "Resource potential and energy efficiency in the buildings of Cameroon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 835-846.
    10. Daniel Efurosibina Attoye & Kheira Anissa Tabet Aoul & Ahmed Hassan, 2017. "A Review on Building Integrated Photovoltaic Façade Customization Potentials," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    11. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno, 2018. "Peanut Shell for Energy: Properties and Its Potential to Respect the Environment," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    12. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    13. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & López-González, Luis M. & Olasolo-Alonso, Pablo, 2018. "Environmental and energy impact of the EPBD in residential buildings in hot and temperate Mediterranean zones: The case of Spain," Energy, Elsevier, vol. 161(C), pages 618-634.
    14. Mohammed Guezgouz & Jakub Jurasz & Benaissa Bekkouche, 2019. "Techno-Economic and Environmental Analysis of a Hybrid PV-WT-PSH/BB Standalone System Supplying Various Loads," Energies, MDPI, vol. 12(3), pages 1-28, February.
    15. Agnieszka Janik & Adam Ryszko & Marek Szafraniec, 2020. "Greenhouse Gases and Circular Economy Issues in Sustainability Reports from the Energy Sector in the European Union," Energies, MDPI, vol. 13(22), pages 1-36, November.
    16. Prussi, M. & Weindorf, W. & Buffi, M. & Sánchez López, J. & Scarlat, N., 2021. "Are algae ready to take off? GHG emission savings of algae-to-kerosene production," Applied Energy, Elsevier, vol. 304(C).
    17. Agnieszka Jachura & Robert Sekret, 2021. "Life Cycle Assessment of the Use of Phase Change Material in an Evacuated Solar Tube Collector," Energies, MDPI, vol. 14(14), pages 1-18, July.
    18. López-Ochoa, Luis M. & Verichev, Konstantin & Las-Heras-Casas, Jesús & Carpio, Manuel, 2019. "Solar domestic hot water regulation in the Latin American residential sector with the implementation of the Energy Performance of Buildings Directive: The case of Chile," Energy, Elsevier, vol. 188(C).
    19. José M. Cansino & Roberto Moreno & Daniela Quintana & Rocio Roman-Collado, 2019. "Health and Heating in the City of Temuco (Chile). Monetary Savings of Replacing Biomass with PV System in the Residential Sector," Sustainability, MDPI, vol. 11(19), pages 1-22, September.
    20. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4183-:d:592171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.