IDEAS home Printed from
   My bibliography  Save this article

Quantification of the carbon intensity of electricity produced and used in Europe


  • Scarlat, Nicolae
  • Prussi, Matteo
  • Padella, Monica


The EU has a comprehensive legislation to facilitate the energy transition towards a low carbon energy system and achieve the EU’s Paris Agreement commitments for reducing greenhouse gas emissions. The European Green Deal is an integral part of the EU strategy for a sustainable and climate neutral economy by 2050. The decarbonisation of the power generation is essential to achieve the goal of decarbonising the energy and transport sectors. This paper presents a study conducted to quantify the carbon emissions associated to the production of electricity produced and used in European countries, based on a comprehensive methodology developed for this purpose. A spreadsheet model has been developed that considers the various sources for electricity generation, the type of plants, conversion efficiencies, upstream emissions and emissions from power plant construction, as well as the electricity trade. The results show the greenhouse gas emissions from the production and use of electricity in all European countries, revealing significant variations between countries. The carbon intensity of electricity shows a clear reduction trend since 1990, for most of the European countries. In the European Union, carbon intensity of electricity used at low voltage degreased from 641 gCO2eq/kWh in 1990 to 334 gCO2eq/kWh in 2019, and this trend is expected to continue in the coming years.

Suggested Citation

  • Scarlat, Nicolae & Prussi, Matteo & Padella, Monica, 2022. "Quantification of the carbon intensity of electricity produced and used in Europe," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012149
    DOI: 10.1016/j.apenergy.2021.117901

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Scarlat, Nicolae & Dallemand, Jean-François & Monforti-Ferrario, Fabio & Banja, Manjola & Motola, Vincenzo, 2015. "Renewable energy policy framework and bioenergy contribution in the European Union – An overview from National Renewable Energy Action Plans and Progress Reports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 969-985.
    2. Fthenakis, Vasilis M. & Kim, Hyung Chul, 2007. "Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study," Energy Policy, Elsevier, vol. 35(4), pages 2549-2557, April.
    3. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    4. Ethan S. Warner & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 73-92, April.
    5. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    6. Bo Tranberg & Olivier Corradi & Bruno Lajoie & Thomas Gibon & Iain Staffell & Gorm Bruun Andresen, 2018. "Real-Time Carbon Accounting Method for the European Electricity Markets," Papers 1812.06679,, revised May 2019.
    7. Vincenzo Muteri & Maurizio Cellura & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Marina Mistretta & Maria Laura Parisi, 2020. "Review on Life Cycle Assessment of Solar Photovoltaic Panels," Energies, MDPI, vol. 13(1), pages 1-38, January.
    8. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    9. Hyung Chul Kim & Vasilis Fthenakis & Jun‐Ki Choi & Damon E. Turney, 2012. "Life Cycle Greenhouse Gas Emissions of Thin‐film Photovoltaic Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 110-121, April.
    10. David D. Hsu & Patrick O’Donoughue & Vasilis Fthenakis & Garvin A. Heath & Hyung Chul Kim & Pamala Sawyer & Jun‐Ki Choi & Damon E. Turney, 2012. "Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 122-135, April.
    11. Andris Piebalgs, 2006. "Green paper: A European strategy for sustainable, competitive and secure energy," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 7(02), pages 8-20, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kolahchian Tabrizi, Mehrshad & Bonalumi, Davide & Lozza, Giovanni Gustavo, 2024. "Analyzing the global warming potential of the production and utilization of lithium-ion batteries with nickel-manganese-cobalt cathode chemistries in European Gigafactories," Energy, Elsevier, vol. 288(C).
    2. Chirumalla, Koteshwar & Kulkov, Ignat & Parida, Vinit & Dahlquist, Erik & Johansson, Glenn & Stefan, Ioana, 2024. "Enabling battery circularity: Unlocking circular business model archetypes and collaboration forms in the electric vehicle battery ecosystem," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    3. Toni Bogdanoff & Murat Tiryakioğlu & Tomas Liljenfors & Anders E. W. Jarfors & Salem Seifeddine & Ehsan Ghassemali, 2023. "On the Effectiveness of Rotary Degassing of Recycled Al-Si Alloy Melts: The Effect on Melt Quality and Energy Consumption for Melt Preparation," Sustainability, MDPI, vol. 15(6), pages 1-10, March.
    4. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    5. Aljolani, Osama & Heberle, Florian & Brüggemann, Dieter, 2024. "Thermo-economic and environmental analysis of a CO2 residential air conditioning system in comparison to HFC-410A and HFC-32 in temperate and subtropical climates," Applied Energy, Elsevier, vol. 353(PA).
    6. Hyungsu Kang & Hyunmin Daniel Zoh, 2022. "Classifying Regional and Industrial Characteristics of GHG Emissions in South Korea," Energies, MDPI, vol. 15(20), pages 1-16, October.
    7. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    8. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    9. Evers, V.H.M. & Kirkels, A.F. & Godjevac, M., 2023. "Carbon footprint of hydrogen-powered inland shipping: Impacts and hotspots," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Pinjie Xie & Sheng Wang & Jie Liao & Feihu Sun, 2024. "Study on Spatial-Temporal Disparities and Factors Influencing Electricity Consumption Carbon Emissions in China," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
    11. Matteo Prussi & Lorenzo Laveneziana & Lorenzo Testa & David Chiaramonti, 2022. "Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports," Energies, MDPI, vol. 15(21), pages 1-17, October.
    12. Lizana, Jesus & Halloran, Claire E. & Wheeler, Scot & Amghar, Nabil & Renaldi, Renaldi & Killendahl, Markus & Perez-Maqueda, Luis A. & McCulloch, Malcolm & Chacartegui, Ricardo, 2023. "A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification," Energy, Elsevier, vol. 262(PA).
    13. Ganter, Alissa & Gabrielli, Paolo & Sansavini, Giovanni, 2024. "Near-term infrastructure rollout and investment strategies for net-zero hydrogen supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    14. Luca Silvestri & Antonio Forcina & Cecilia Silvestri & Gabriella Arcese & Domenico Falcone, 2024. "Exploring the Environmental Benefits of an Open-Loop Circular Economy Strategy for Automotive Batteries in Industrial Applications," Energies, MDPI, vol. 17(7), pages 1-20, April.
    15. Alexandr Tsoy & Alexandr Granovskiy & Dmitriy Koretskiy & Diana Tsoy-Davis & Nikita Veselskiy & Mikhail Alechshenko & Alexandr Minayev & Inara Kim & Rita Jamasheva, 2023. "Experimental Study of the Heat Flow and Energy Consumption during Liquid Cooling Due to Radiative Heat Transfer in Winter," Energies, MDPI, vol. 16(13), pages 1-18, June.
    16. Wojciech Koznowski & Andrzej Łebkowski, 2022. "Unmanned Electric Tugboat Formation Multi-Agent Energy-Aware Control System Concept," Energies, MDPI, vol. 15(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    2. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    3. Iosifov Valeriy Victorovich & Evgenii Yu. Khrustalev & Sergey N. Larin & Oleg E. Khrustalev, 2021. "The Linear Programming Problem of Regional Energy System Optimization," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 281-288.
    4. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    5. Nian, Victor & Chou, S.K. & Su, Bin & Bauly, John, 2014. "Life cycle analysis on carbon emissions from power generation – The nuclear energy example," Applied Energy, Elsevier, vol. 118(C), pages 68-82.
    6. Roberts, M.B. & Bruce, A. & MacGill, I., 2019. "Opportunities and barriers for photovoltaics on multi-unit residential buildings: Reviewing the Australian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 95-110.
    7. Atif Ali & Theodore W. Koch & Timothy A. Volk & Robert W. Malmsheimer & Mark H. Eisenbies & Danielle Kloster & Tristan R. Brown & Nehan Naim & Obste Therasme, 2022. "The Environmental Life Cycle Assessment of Electricity Production in New York State from Distributed Solar Photovoltaic Systems," Energies, MDPI, vol. 15(19), pages 1-20, October.
    8. Steffi Weyand & Carolin Wittich & Liselotte Schebek, 2019. "Environmental Performance of Emerging Photovoltaic Technologies: Assessment of the Status Quo and Future Prospects Based on a Meta-Analysis of Life-Cycle Assessment Studies," Energies, MDPI, vol. 12(22), pages 1-25, November.
    9. Lunardi, Marina M. & Needell, David R. & Bauser, Haley & Phelan, Megan & Atwater, Harry A. & Corkish, Richard, 2019. "Life Cycle Assessment of tandem LSC-Si devices," Energy, Elsevier, vol. 181(C), pages 1-10.
    10. Orfanos, Neoptolemos & Mitzelos, Dimitris & Sagani, Angeliki & Dedoussis, Vassilis, 2019. "Life-cycle environmental performance assessment of electricity generation and transmission systems in Greece," Renewable Energy, Elsevier, vol. 139(C), pages 1447-1462.
    11. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    13. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    14. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    15. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    16. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    17. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    18. Ozcan, Mustafa, 2016. "Estimation of Turkey׳s GHG emissions from electricity generation by fuel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 832-840.
    19. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    20. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.