IDEAS home Printed from
   My bibliography  Save this paper

Carbon emission coefficient measurement of the coal-to-power energy chain in China


  • Shiwei Yu
  • Yi-Ming Wei

    (Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology)

  • Haixiang Guo
  • Liping Ding


Coal-fired electricity generation has become the largest source of carbon emission in China. This study utilizes life-cycle assessment to assess the effect of carbon emissions and to calculate the coefficient of carbon emissions in coal-to-energy chains. Results show that the carbon emission coefficient of the coal-to-energy chain in China is 875 g/kW h-1, which is a relatively low level compared with that of other countries. CO2 is the main type of greenhouse gas emission and the most abundant type of direct emission. China has to reduce electrical consumption in the coal-mining process to reduce carbon emissions in coal-to-energy chains, as well as to facilitate railway-line construction to improve the proportion of railway transportation to coal transportation.

Suggested Citation

  • Shiwei Yu & Yi-Ming Wei & Haixiang Guo & Liping Ding, 2012. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," CEEP-BIT Working Papers 39, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  • Handle: RePEc:biw:wpaper:39

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Yu, Shiwei & Wei, Yi-ming, 2012. "Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model," Energy Policy, Elsevier, vol. 42(C), pages 521-529.
    2. Hoffmann, Bettina Susanne & Szklo, Alexandre, 2011. "Integrated gasification combined cycle and carbon capture: A risky option to mitigate CO2 emissions of coal-fired power plants," Applied Energy, Elsevier, vol. 88(11), pages 3917-3929.
    3. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    4. Kotowicz, Janusz & Chmielniak, Tadeusz & Janusz-Szymańska, Katarzyna, 2010. "The influence of membrane CO2 separation on the efficiency of a coal-fired power plant," Energy, Elsevier, vol. 35(2), pages 841-850.
    5. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    6. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    7. Nishimura, A. & Hayashi, Y. & Tanaka, K. & Hirota, M. & Kato, S. & Ito, M. & Araki, K. & Hu, E.J., 2010. "Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system," Applied Energy, Elsevier, vol. 87(9), pages 2797-2807, September.
    8. David D. Hsu & Patrick O’Donoughue & Vasilis Fthenakis & Garvin A. Heath & Hyung Chul Kim & Pamala Sawyer & Jun‐Ki Choi & Damon E. Turney, 2012. "Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 122-135, April.
    9. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang & Liu, Lei, 2012. "Life cycle assessment of a solar combined cooling heating and power system in different operation strategies," Applied Energy, Elsevier, vol. 92(C), pages 843-853.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    2. Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
    3. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    4. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    5. Wong, J.H. & Royapoor, M. & Chan, C.W., 2016. "Review of life cycle analyses and embodied energy requirements of single-crystalline and multi-crystalline silicon photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 608-618.
    6. Catalina Ferat Toscano & Cecilia Martin-del-Campo & Gabriela Moeller-Chavez & Gabriel Leon de los Santos & Juan-Luis François & Daniel Revollo Fernandez, 2019. "Life Cycle Assessment of a Combined-Cycle Gas Turbine with a Focus on the Chemicals Used in Water Conditioning," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    7. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    8. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    9. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    10. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    11. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    12. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
    13. Lucas, Alexandre & Neto, Rui Costa & Silva, Carla Alexandra, 2013. "Energy supply infrastructure LCA model for electric and hydrogen transportation systems," Energy, Elsevier, vol. 56(C), pages 70-80.
    14. Santoyo-Castelazo, E. & Gujba, H. & Azapagic, A., 2011. "Life cycle assessment of electricity generation in Mexico," Energy, Elsevier, vol. 36(3), pages 1488-1499.
    15. Paul E. Hardisty & Tom S. Clark & Robert G. Hynes, 2012. "Life Cycle Greenhouse Gas Emissions from Electricity Generation: A Comparative Analysis of Australian Energy Sources," Energies, MDPI, vol. 5(4), pages 1-26, March.
    16. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    17. Hamilton, Nicholas E. & Howard, Bahareh Sara & Diesendorf, Mark & Wiedmann, Thomas, 2017. "Computing life-cycle emissions from transitioning the electricity sector using a discrete numerical approach," Energy, Elsevier, vol. 137(C), pages 314-324.
    18. Crane, Keith & Curtright, Aimee E. & Ortiz, David S. & Samaras, Constantine & Burger, Nicholas, 2011. "The economic costs of reducing greenhouse gas emissions under a U.S. national renewable electricity mandate," Energy Policy, Elsevier, vol. 39(5), pages 2730-2739, May.
    19. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    20. Scarlat, Nicolae & Prussi, Matteo & Padella, Monica, 2022. "Quantification of the carbon intensity of electricity produced and used in Europe," Applied Energy, Elsevier, vol. 305(C).

    More about this item


    coal-fired power; carbon emission coefficient; life cycle assessment; sensitivity analysis;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:biw:wpaper:39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zhi-Fu Mi (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.