IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i8p2940-2953.html
   My bibliography  Save this article

Valuing the greenhouse gas emissions from nuclear power: A critical survey

Author

Listed:
  • Sovacool, Benjamin K.

Abstract

This article screens 103 lifecycle studies of greenhouse gas-equivalent emissions for nuclear power plants to identify a subset of the most current, original, and transparent studies. It begins by briefly detailing the separate components of the nuclear fuel cycle before explaining the methodology of the survey and exploring the variance of lifecycle estimates. It calculates that while the range of emissions for nuclear energy over the lifetime of a plant, reported from qualified studies examined, is from 1.4 g of carbon dioxide equivalent per kWh (g CO2e/kWh) to 288 g CO2e/kWh, the mean value is 66 g CO2e/kWh. The article then explains some of the factors responsible for the disparity in lifecycle estimates, in particular identifying errors in both the lowest estimates (not comprehensive) and the highest estimates (failure to consider co-products). It should be noted that nuclear power is not directly emitting greenhouse gas emissions, but rather that lifecycle emissions occur through plant construction, operation, uranium mining and milling, and plant decommissioning.

Suggested Citation

  • Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:8:p:2940-2953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00199-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Proops, John LR & Gay, Philip W & Speck, Stefan & Schroder, Thomas, 1996. "The lifetime pollution implications of various types of electricity generation. An input-output analysis," Energy Policy, Elsevier, vol. 24(3), pages 229-237, March.
    2. Meier, Paul J. & Wilson, Paul P. H. & Kulcinski, Gerald L. & Denholm, Paul L., 2005. "US electric industry response to carbon constraint: a life-cycle assessment of supply side alternatives," Energy Policy, Elsevier, vol. 33(9), pages 1099-1108, June.
    3. Mortimer, Nigel, 1991. "Nuclear power and global warming," Energy Policy, Elsevier, vol. 19(1), pages 76-78.
    4. Lee, Kun-Mo & Lee, Sang-Yong & Hur, Tak, 2004. "Life cycle inventory analysis for electricity in Korea," Energy, Elsevier, vol. 29(1), pages 87-101.
    5. Fthenakis, Vasilis M. & Kim, Hyung Chul, 2007. "Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study," Energy Policy, Elsevier, vol. 35(4), pages 2549-2557, April.
    6. Rashad, S. M. & Hammad, F. H., 2000. "Nuclear power and the environment: comparative assessment of environmental and health impacts of electricity-generating systems," Applied Energy, Elsevier, vol. 65(1-4), pages 211-229, April.
    7. Voorspools, Kris R. & Brouwers, Els A. & D'haeseleer, William D., 2000. "Energy content and indirect greenhouse gas emissions embedded in [`]emission-free' power plants: results for the Low Countries," Applied Energy, Elsevier, vol. 67(3), pages 307-330, November.
    8. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    9. Tokimatsu, Koji & Kosugi, Takanobu & Asami, Takayoshi & Williams, Eric & Kaya, Yoichi, 2006. "Evaluation of lifecycle CO2 emissions from the Japanese electric power sector in the 21st century under various nuclear scenarios," Energy Policy, Elsevier, vol. 34(7), pages 833-852, May.
    10. Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
    11. van de Vate, Joop F., 1997. "Comparison of energy sources in terms of their full energy chain emission factors of greenhouse gases," Energy Policy, Elsevier, vol. 25(1), pages 1-6, January.
    12. Chapman, Peter F., 1975. "Energy analysis of nuclear power stations," Energy Policy, Elsevier, vol. 3(4), pages 285-298, December.
    13. Echávarri, Luis E., 2007. "Is Nuclear Energy at a Turning Point?," The Electricity Journal, Elsevier, vol. 20(9), pages 89-97, November.
    14. Hohenwarter, Dieter J. & Heindler, Manfred, 1988. "Net power and energy output of the German LWR nuclear power system," Energy, Elsevier, vol. 13(3), pages 287-300.
    15. Sundqvist, Thomas, 2004. "What causes the disparity of electricity externality estimates?," Energy Policy, Elsevier, vol. 32(15), pages 1753-1766, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:8:p:2940-2953. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.