IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p914-d496490.html
   My bibliography  Save this article

An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings

Author

Listed:
  • Valeria Palomba

    (CNR Institute for Advanced Energy Technologies (ITAE), 98126 Messina, Italy)

  • Emiliano Borri

    (GREiA Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Antonios Charalampidis

    (Laboratory of Steam Boilers and Thermal Plants, National Technical University of Athens, 15780 Athens, Greece)

  • Andrea Frazzica

    (CNR Institute for Advanced Energy Technologies (ITAE), 98126 Messina, Italy)

  • Sotirios Karellas

    (Laboratory of Steam Boilers and Thermal Plants, National Technical University of Athens, 15780 Athens, Greece)

  • Luisa F. Cabeza

    (GREiA Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

Abstract

Increasing the energy efficiency of residential and non-residential buildings is a crucial point towards the development of the sustainable cities of the future. To reach such a goal, the commonly employed intervention measures (for instance, on facades and glass) are not sufficient and efforts in reaching a fully renewable energy generation are mandatory. In this context, this paper discusses the applicability of a system with solar and biomass as the main energy sources in different climates for heating, cooling, domestic hot water and electricity generation in office buildings. The energy system includes solar thermal collectors with thermoelectric generators, a biomass boiler, a reversible heat pump/organic Rankine cycle and an adsorption chiller. The results showed that the system can operate with a share of renewables higher than 70% for all energy needs, with up to 80% of the overall energy demand supplied only by solar and biomass sources even in the northern locations.

Suggested Citation

  • Valeria Palomba & Emiliano Borri & Antonios Charalampidis & Andrea Frazzica & Sotirios Karellas & Luisa F. Cabeza, 2021. "An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings," Energies, MDPI, vol. 14(4), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:914-:d:496490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carmen De la Cruz-Lovera & Alberto-Jesús Perea-Moreno & José-Luis De la Cruz-Fernández & José Antonio Alvarez-Bermejo & Francisco Manzano-Agugliaro, 2017. "Worldwide Research on Energy Efficiency and Sustainability in Public Buildings," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    2. Kwon Sook Park & Seiyong Kim, 2018. "Utilising Unused Energy Resources for Sustainable Heating and Cooling System in Buildings: A Case Study of Geothermal Energy and Water Sources in a University," Energies, MDPI, vol. 11(7), pages 1-8, July.
    3. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    4. Sergio Gómez Melgar & Miguel Ángel Martínez Bohórquez & José Manuel Andújar Márquez, 2018. "uhuMEB: Design, Construction, and Management Methodology of Minimum Energy Buildings in Subtropical Climates," Energies, MDPI, vol. 11(10), pages 1-34, October.
    5. Krstić-Furundžić, Aleksandra & Vujošević, Milica & Petrovski, Aleksandar, 2019. "Energy and environmental performance of the office building facade scenarios," Energy, Elsevier, vol. 183(C), pages 437-447.
    6. Maria-Mar Fernandez-Antolin & José Manuel del Río & Vincenzo Costanzo & Francesco Nocera & Roberto-Alonso Gonzalez-Lezcano, 2019. "Passive Design Strategies for Residential Buildings in Different Spanish Climate Zones," Sustainability, MDPI, vol. 11(18), pages 1-22, September.
    7. Ana Medina & Ángeles Cámara & José-Ramón Monrobel, 2016. "Measuring the Socioeconomic and Environmental Effects of Energy Efficiency Investments for a More Sustainable Spanish Economy," Sustainability, MDPI, vol. 8(10), pages 1-21, October.
    8. Nienborg, Björn & Dalibard, Antoine & Schnabel, Lena & Eicker, Ursula, 2017. "Approaches for the optimized control of solar thermally driven cooling systems," Applied Energy, Elsevier, vol. 185(P1), pages 732-744.
    9. Seddiki, Mohammed & Bennadji, Amar, 2019. "Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 101-117.
    10. Mohamed, Ayman & Hamdy, Mohamed & Hasan, Ala & Sirén, Kai, 2015. "The performance of small scale multi-generation technologies in achieving cost-optimal and zero-energy office building solutions," Applied Energy, Elsevier, vol. 152(C), pages 94-108.
    11. Sangmu Bae & Yujin Nam & Ivor da Cunha, 2019. "Economic Solution of the Tri-Generation System Using Photovoltaic-Thermal and Ground Source Heat Pump for Zero Energy Building (ZEB) Realization," Energies, MDPI, vol. 12(17), pages 1-25, August.
    12. Ray Pritchard & Scott Kelly, 2017. "Realising Operational Energy Performance in Non-Domestic Buildings: Lessons Learnt from Initiatives Applied in Cambridge," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    13. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    14. Ilaria Ballarini & Giovanna De Luca & Argun Paragamyan & Anna Pellegrino & Vincenzo Corrado, 2019. "Transformation of an Office Building into a Nearly Zero Energy Building (nZEB): Implications for Thermal and Visual Comfort and Energy Performance," Energies, MDPI, vol. 12(5), pages 1-18, March.
    15. Palomba, Valeria & Dino, Giuseppe E. & Frazzica, Andrea, 2020. "Coupling sorption and compression chillers in hybrid cascade layout for efficient exploitation of renewables: Sizing, design and optimization," Renewable Energy, Elsevier, vol. 154(C), pages 11-28.
    16. Dai, Y.J. & Hu, H.M. & Ge, T.S. & Wang, R.Z. & Kjellsen, Per, 2016. "Investigation on a mini-CPC hybrid solar thermoelectric generator unit," Renewable Energy, Elsevier, vol. 92(C), pages 83-94.
    17. Palomba, Valeria & Borri, Emiliano & Charalampidis, Antonios & Frazzica, Andrea & Cabeza, Luisa F. & Karellas, Sotirios, 2020. "Implementation of a solar-biomass system for multi-family houses: Towards 100% renewable energy utilization," Renewable Energy, Elsevier, vol. 166(C), pages 190-209.
    18. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    2. Alberto Cerezo-Narváez & María-José Bastante-Ceca & José-María Piñero-Vilela, 2021. "Economic and Environmental Assessment on Implementing Solar Renewable Energy Systems in Spanish Residential Homes," Energies, MDPI, vol. 14(14), pages 1-39, July.
    3. Weitzer, Maximilian & Müller, Dominik & Karl, Jürgen, 2022. "Two-phase expansion processes in heat pump – ORC systems (Carnot batteries) with volumetric machines for enhanced off-design efficiency," Renewable Energy, Elsevier, vol. 199(C), pages 720-732.
    4. Gabriel Zsembinszki & Boniface Dominick Mselle & David Vérez & Emiliano Borri & Andreas Strehlow & Birgo Nitsch & Andrea Frazzica & Valeria Palomba & Luisa F. Cabeza, 2021. "A New Methodological Approach for the Evaluation of Scaling Up a Latent Storage Module for Integration in Heat Pumps," Energies, MDPI, vol. 14(22), pages 1-17, November.
    5. Valeria Palomba & Antonino Bonanno & Giovanni Brunaccini & Davide Aloisio & Francesco Sergi & Giuseppe E. Dino & Efstratios Varvaggiannis & Sotirios Karellas & Birgo Nitsch & Andreas Strehlow & André , 2021. "Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis," Energies, MDPI, vol. 14(9), pages 1-28, April.
    6. Marika Pilou & George Kosmadakis & George Meramveliotakis, 2023. "Modeling of an Integrated Renewable-Energy-Based System for Heating, Cooling, and Electricity for Buildings," Energies, MDPI, vol. 16(12), pages 1-29, June.
    7. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeria Palomba & Antonino Bonanno & Giovanni Brunaccini & Davide Aloisio & Francesco Sergi & Giuseppe E. Dino & Efstratios Varvaggiannis & Sotirios Karellas & Birgo Nitsch & Andreas Strehlow & André , 2021. "Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis," Energies, MDPI, vol. 14(9), pages 1-28, April.
    2. Yorgos Spanodimitriou & Giovanni Ciampi & Michelangelo Scorpio & Niloufar Mokhtari & Ainoor Teimoorzadeh & Roberta Laffi & Sergio Sibilio, 2022. "Passive Strategies for Building Retrofitting: Performances Analysis and Incentive Policies for the Iranian Scenario," Energies, MDPI, vol. 15(5), pages 1-22, February.
    3. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Palomba, Valeria & Borri, Emiliano & Charalampidis, Antonios & Frazzica, Andrea & Cabeza, Luisa F. & Karellas, Sotirios, 2020. "Implementation of a solar-biomass system for multi-family houses: Towards 100% renewable energy utilization," Renewable Energy, Elsevier, vol. 166(C), pages 190-209.
    5. Panagiotis Patlakas & Georgios Koronaios & Rokia Raslan & Gareth Neighbour & Hasim Altan, 2017. "Case Studies of Environmental Visualization," Energies, MDPI, vol. 10(10), pages 1-18, September.
    6. Gabriel Zsembinszki & Boniface Dominick Mselle & David Vérez & Emiliano Borri & Andreas Strehlow & Birgo Nitsch & Andrea Frazzica & Valeria Palomba & Luisa F. Cabeza, 2021. "A New Methodological Approach for the Evaluation of Scaling Up a Latent Storage Module for Integration in Heat Pumps," Energies, MDPI, vol. 14(22), pages 1-17, November.
    7. Cezar-Petre Simion & Ciprian Nicolescu & Mihai Cioc, 2018. "Selection of Energy Efficiency Projects for Dwelling Stock to Achieve Optimal Project Portfolio at the Regional Level by Applying LCC. An Analysis Based on Three Scenarios in the South-Muntenia Region," Energies, MDPI, vol. 11(6), pages 1-21, June.
    8. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Alberto-Jesus Perea-Moreno, 2018. "Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    9. Richard Thygesen, 2017. "An Analysis of Different Solar-Assisted Heating Systems and Their Effect on the Energy Performance of Multifamily Buildings—A Swedish Case," Energies, MDPI, vol. 10(1), pages 1-16, January.
    10. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    11. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    12. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    13. Esther Salmerón-Manzano & Jose Antonio Garrido-Cardenas & Francisco Manzano-Agugliaro, 2020. "Worldwide Research Trends on Medicinal Plants," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    14. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    15. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    16. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    17. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    18. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    19. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    20. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:914-:d:496490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.