IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2745-d175458.html
   My bibliography  Save this article

uhuMEB: Design, Construction, and Management Methodology of Minimum Energy Buildings in Subtropical Climates

Author

Listed:
  • Sergio Gómez Melgar

    (Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Campus de El Carmen, Huelva 21007, Spain)

  • Miguel Ángel Martínez Bohórquez

    (Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Campus de El Carmen, Huelva 21007, Spain)

  • José Manuel Andújar Márquez

    (Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Campus de El Carmen, Huelva 21007, Spain)

Abstract

Knowledge of buildings′ energy efficiency has advanced thanks to research carried out in recent years. Many of the discoveries in this field have recently been incorporated into mandatory construction regulations for each country. However, not many of the architects and engineers involved in the construction industry clearly know how to achieve those goals in their designs. This document is based on the extensive experience in architectural design, the integration of renewable energies, the energy simulation of buildings and data acquisition, and analysis of the research team involved. It is presented in a practical and holistic approach and focused in subtropical climates. A structured methodology for the proper decision-making process during all the different stages of a minimum energy building (MEB) is likewise presented. The proposed methodology depicted aims at providing architects and engineers with a systematic and orderly step-by-step procedure and incorporates the instrumentation/control and data analysis as essential elements that support the validation of the expected results from the design, the construction, and the operation phase of the building. The paper develops a case study that illustrates the proposed methodology. This new methodology for MEB in subtropical climates constitutes an innovation in this field.

Suggested Citation

  • Sergio Gómez Melgar & Miguel Ángel Martínez Bohórquez & José Manuel Andújar Márquez, 2018. "uhuMEB: Design, Construction, and Management Methodology of Minimum Energy Buildings in Subtropical Climates," Energies, MDPI, vol. 11(10), pages 1-34, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2745-:d:175458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2745/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2745/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Bisegna & Benedetta Mattoni & Paola Gori & Francesco Asdrubali & Claudia Guattari & Luca Evangelisti & Sara Sambuco & Francesco Bianchi, 2016. "Influence of Insulating Materials on Green Building Rating System Results," Energies, MDPI, vol. 9(9), pages 1-17, September.
    2. Sheraz Aslam & Zafar Iqbal & Nadeem Javaid & Zahoor Ali Khan & Khursheed Aurangzeb & Syed Irtaza Haider, 2017. "Towards Efficient Energy Management of Smart Buildings Exploiting Heuristic Optimization with Real Time and Critical Peak Pricing Schemes," Energies, MDPI, vol. 10(12), pages 1-25, December.
    3. Kaiser Ahmed & Margaux Carlier & Christian Feldmann & Jarek Kurnitski, 2018. "A New Method for Contrasting Energy Performance and Near-Zero Energy Building Requirements in Different Climates and Countries," Energies, MDPI, vol. 11(6), pages 1-22, May.
    4. Zhou, Zhihua & Zhang, Zhiming & Zuo, Jian & Huang, Ke & Zhang, Liying, 2015. "Phase change materials for solar thermal energy storage in residential buildings in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 692-703.
    5. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2014. "Domestic energy consumption patterns in a hot and humid climate: A multiple-case study analysis," Applied Energy, Elsevier, vol. 114(C), pages 353-365.
    6. Olofsson, Thomas & Mahlia, T.M.I., 2012. "Modeling and simulation of the energy use in an occupied residential building in cold climate," Applied Energy, Elsevier, vol. 91(1), pages 432-438.
    7. Chow, Stanley K.H. & Li, Danny H.W. & Lee, Eric W.M. & Lam, Joseph C., 2013. "Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls," Applied Energy, Elsevier, vol. 112(C), pages 1016-1024.
    8. Ilaria Ballarini & Vincenzo Corrado, 2017. "A New Methodology for Assessing the Energy Consumption of Building Stocks," Energies, MDPI, vol. 10(8), pages 1-22, July.
    9. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    10. Umberto Berardi & Lamberto Tronchin & Massimiliano Manfren & Benedetto Nastasi, 2018. "On the Effects of Variation of Thermal Conductivity in Buildings in the Italian Construction Sector," Energies, MDPI, vol. 11(4), pages 1-17, April.
    11. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2014. "Domestic energy consumption patterns in a hot and arid climate: A multiple-case study analysis," Renewable Energy, Elsevier, vol. 62(C), pages 369-378.
    12. Eguaras-Martínez, María & Vidaurre-Arbizu, Marina & Martín-Gómez, César, 2014. "Simulation and evaluation of Building Information Modeling in a real pilot site," Applied Energy, Elsevier, vol. 114(C), pages 475-484.
    13. Taleb, Hanan M. & Sharples, Steve, 2011. "Developing sustainable residential buildings in Saudi Arabia: A case study," Applied Energy, Elsevier, vol. 88(1), pages 383-391, January.
    14. Cinzia Buratti & Francesco Asdrubali & Domenico Palladino & Antonella Rotili, 2015. "Energy Performance Database of Building Heritage in the Region of Umbria, Central Italy," Energies, MDPI, vol. 8(7), pages 1-18, July.
    15. Mohamed, Ayman & Hasan, Ala & Sirén, Kai, 2014. "Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives," Applied Energy, Elsevier, vol. 114(C), pages 385-399.
    16. Yani Bao & Wai Ling Lee & Jie Jia, 2018. "Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System," Energies, MDPI, vol. 11(5), pages 1-25, May.
    17. AlAjmi, Ali & Abou-Ziyan, Hosny & Ghoneim, Adel, 2016. "Achieving annual and monthly net-zero energy of existing building in hot climate," Applied Energy, Elsevier, vol. 165(C), pages 511-521.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabiana Silvero & Fernanda Rodrigues & Sergio Montelpare, 2019. "A Parametric Study and Performance Evaluation of Energy Retrofit Solutions for Buildings Located in the Hot-Humid Climate of Paraguay—Sensitivity Analysis," Energies, MDPI, vol. 12(3), pages 1-27, January.
    2. Antonino D’Amico & Domenico Panno & Giuseppina Ciulla & Antonio Messineo, 2020. "Multi-Energy School System for Seasonal Use in the Mediterranean Area," Sustainability, MDPI, vol. 12(20), pages 1-27, October.
    3. Sergio Gómez Melgar & Miguel Ángel Martínez Bohórquez & José Manuel Andújar Márquez, 2020. "uhuMEBr: Energy Refurbishment of Existing Buildings in Subtropical Climates to Become Minimum Energy Buildings," Energies, MDPI, vol. 13(5), pages 1-35, March.
    4. Marta Videras Rodríguez & Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2020. "Impact of Global Warming in Subtropical Climate Buildings: Future Trends and Mitigation Strategies," Energies, MDPI, vol. 13(23), pages 1-22, November.
    5. Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2019. "Green Building Rating Systems and the New Framework Level(s): A Critical Review of Sustainability Certification within Europe," Energies, MDPI, vol. 13(1), pages 1-25, December.
    6. Sergio Gómez Melgar & Antonio Sánchez Cordero & Marta Videras Rodríguez & José Manuel Andújar Márquez, 2020. "Matching Energy Consumption and Photovoltaic Production in a Retrofitted Dwelling in Subtropical Climate without a Backup System," Energies, MDPI, vol. 13(22), pages 1-27, November.
    7. Valeria Palomba & Emiliano Borri & Antonios Charalampidis & Andrea Frazzica & Sotirios Karellas & Luisa F. Cabeza, 2021. "An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings," Energies, MDPI, vol. 14(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2015. "Consensus-based low carbon domestic design framework for sustainable homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 417-432.
    2. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    3. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    4. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    6. Diana D’Agostino & Luigi Mele & Francesco Minichiello & Carlo Renno, 2020. "The Use of Ground Source Heat Pump to Achieve a Net Zero Energy Building," Energies, MDPI, vol. 13(13), pages 1-22, July.
    7. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    8. Bolin Chen & Meng Han & Bowei Zhang & Gaoyuan Ouyang & Behrouz Shafei & Xinwei Wang & Shan Hu, 2019. "Efficient Solar-to-Thermal Energy Conversion and Storage with High-Thermal-Conductivity and Form-Stabilized Phase Change Composite Based on Wood-Derived Scaffolds," Energies, MDPI, vol. 12(7), pages 1-11, April.
    9. Ramli, Makbul A.M. & Twaha, Ssennoga & Al-Hamouz, Zakariya, 2017. "Analyzing the potential and progress of distributed generation applications in Saudi Arabia: The case of solar and wind resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 287-297.
    10. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    11. Radwan A. Almasri & Nidal H. Abu-Hamdeh & Abdullah Alajlan & Yazeed Alresheedi, 2022. "Utilizing a Domestic Water Tank to Make the Air Conditioning System in Residential Buildings More Sustainable in Hot Regions," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    12. Wu, Wei & Skye, Harrison M. & Domanski, Piotr A., 2018. "Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings," Applied Energy, Elsevier, vol. 212(C), pages 577-591.
    13. Krarti, Moncef & Aldubyan, Mohammad & Williams, Eric, 2020. "Residential building stock model for evaluating energy retrofit programs in Saudi Arabia," Energy, Elsevier, vol. 195(C).
    14. Long, Linshuang & Ye, Hong & Liu, Minghou, 2016. "A new insight into opaque envelopes in a passive solar house: Properties and roles," Applied Energy, Elsevier, vol. 183(C), pages 685-699.
    15. Xueying Jia & Hui Zhang & Xin Yao & Lei Yang & Zikang Ke & Junle Yan & Xiaoxi Huang & Shiyu Jin, 2023. "Research on Technology System Adaptability of Nearly Zero-Energy Office Buildings in the Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    16. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2016. "Stable, low-cost phase change material for building applications: The eutectic mixture of decanoic acid and tetradecanoic acid," Applied Energy, Elsevier, vol. 168(C), pages 457-464.
    17. Saxena, Rajat & Rakshit, Dibakar & Kaushik, S.C., 2020. "Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings," Renewable Energy, Elsevier, vol. 149(C), pages 587-599.
    18. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
    19. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    20. Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2745-:d:175458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.