IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3254-d169314.html
   My bibliography  Save this article

Peanut Shell for Energy: Properties and Its Potential to Respect the Environment

Author

Listed:
  • Miguel-Angel Perea-Moreno

    (Departamento de Física Aplicada, ceiA3, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain)

  • Francisco Manzano-Agugliaro

    (Department of Engineering, ceiA3, University of Almeria, 04120 Almeria, Spain)

  • Quetzalcoatl Hernandez-Escobedo

    (Faculty of Engineering, Campus Coatzacoalcos, University of Veracruz, Coatzacoalcos, Veracruz 96535, Mexico)

  • Alberto-Jesus Perea-Moreno

    (Departamento de Física Aplicada, ceiA3, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain)

Abstract

The peanut ( Arachys hypogaea ) is a plant of the Fabaceae family (legumes), as are chickpeas, lentils, beans, and peas. It is originally from South America and is used mainly for culinary purposes, in confectionery products, or as a nut as well as for the production of biscuits, breads, sweets, cereals, and salads. Also, due to its high percentage of fat, peanuts are used for industrialized products such as oils, flours, inks, creams, lipsticks, etc. According to the Food and Agriculture Organization (FAO) statistical yearbook in 2016, the production of peanuts was 43,982,066 t, produced in 27,660,802 hectares. Peanuts are grown mainly in Asia, with a global production rate of 65.3%, followed by Africa with 26.2%, the Americas with 8.4%, and Oceania with 0.1%. The peanut industry is one of the main generators of agroindustrial waste (shells). This residual biomass (25–30% of the total weight) has a high energy content that is worth exploring. The main objectives of this study are, firstly, to evaluate the energy parameters of peanut shells as a possible solid biofuel applied as an energy source in residential and industrial heating installations. Secondly, different models are analysed to estimate the higher heating value (HHV) for biomass proposed by different scientists and to determine which most accurately fits the determination of this value for peanut shells. Thirdly, we evaluate the reduction in global CO 2 emissions that would result from the use of peanut shells as biofuel. The obtained HHV of peanut shells (18.547 MJ/kg) is higher than other biomass sources evaluated, such as olive stones (17.884 MJ/kg) or almond shells (18.200 MJ/kg), and similar to other sources of biomass used at present for home and industrial heating applications. Different prediction models of the HHV value proposed by scientists for different types of biomass have been analysed and the one that best fits the calculation for the peanut shell has been determined. The CO 2 reduction that would result from the use of peanut shells as an energy source has been evaluated in all production countries, obtaining values above 0.5 ‰ of their total emissions.

Suggested Citation

  • Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno, 2018. "Peanut Shell for Energy: Properties and Its Potential to Respect the Environment," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3254-:d:169314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carmen De la Cruz-Lovera & Alberto-Jesús Perea-Moreno & José-Luis De la Cruz-Fernández & José Antonio Alvarez-Bermejo & Francisco Manzano-Agugliaro, 2017. "Worldwide Research on Energy Efficiency and Sustainability in Public Buildings," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    2. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    3. Pleßmann, Guido & Blechinger, Philipp, 2017. "Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets," Energy, Elsevier, vol. 137(C), pages 1041-1053.
    4. Nava, Consuelo R. & Meleo, Linda & Cassetta, Ernesto & Morelli, Giovanna, 2018. "The impact of the EU-ETS on the aviation sector: Competitive effects of abatement efforts by airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 20-34.
    5. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.
    6. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno, 2018. "Renewable Energy in Urban Areas: Worldwide Research Trends," Energies, MDPI, vol. 11(3), pages 1-19, March.
    7. Catherine M. O'Reilly & Simone R. Alin & Pierre-Denis Plisnier & Andrew S. Cohen & Brent A. McKee, 2003. "Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa," Nature, Nature, vol. 424(6950), pages 766-768, August.
    8. Sanglim Lee & Minkyung Kim & Jiwoong Lee, 2017. "Analyzing the Impact of Nuclear Power on CO 2 Emissions," Sustainability, MDPI, vol. 9(8), pages 1-13, August.
    9. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
    10. Jiyeon Jung & Yoonmo Koo, 2018. "Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG) Emissions," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    11. Ali, Yousaf, 2017. "Carbon, water and land use accounting: Consumption vs production perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 921-934.
    12. Kuriyama, Akihisa & Abe, Naoya, 2018. "Ex-post assessment of the Kyoto Protocol – quantification of CO2 mitigation impact in both Annex B and non-Annex B countries-," Applied Energy, Elsevier, vol. 220(C), pages 286-295.
    13. Seungho Cho & Seunguk Na, 2017. "The Reduction of CO 2 Emissions by Application of High-Strength Reinforcing Bars to Three Different Structural Systems in South Korea," Sustainability, MDPI, vol. 9(9), pages 1-24, September.
    14. Al-Hamamre, Zayed & Saidan, Motasem & Hararah, Muhanned & Rawajfeh, Khaled & Alkhasawneh, Hussam E. & Al-Shannag, Mohammad, 2017. "Wastes and biomass materials as sustainable-renewable energy resources for Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 295-314.
    15. Helder Filipe dos Santos Viana & Abel Martins Rodrigues & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Evaluation of the Physical, Chemical and Thermal Properties of Portuguese Maritime Pine Biomass," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bong, Jang Tyng & Loy, Adrian Chun Minh & Chin, Bridgid Lai Fui & Lam, Man Kee & Tang, Daniel Kuok Ho & Lim, Huei Yeong & Chai, Yee Ho & Yusup, Suzana, 2020. "Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst," Energy, Elsevier, vol. 207(C).
    2. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    3. Jing Ma & Zhaoyun Yin & Zhengbing Guo, 2021. "Meta-Evaluation for the Evaluation of Environmental Management: Standards and Practices," Sustainability, MDPI, vol. 13(5), pages 1-18, February.
    4. Zhichao Shi & Aowen Ma & Yuanhang Chen & Menghan Zhang & Yin Zhang & Na Zhou & Shisuo Fan & Yi Wang, 2023. "The Removal of Tetracycline from Aqueous Solutions Using Peanut Shell Biochars Prepared at Different Pyrolysis Temperatures," Sustainability, MDPI, vol. 15(1), pages 1-15, January.
    5. Aisha Nazir & Um-e- Laila & Firdaus-e- Bareen & Erum Hameed & Muhammad Shafiq, 2021. "Sustainable Management of Peanut Shell through Biochar and Its Application as Soil Ameliorant," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    6. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno, 2020. "Sustainable Thermal Energy Generation at Universities by Using Loquat Seeds as Biofuel," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    7. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    8. Tomasz Noszczyk & Arkadiusz Dyjakon & Jacek A. Koziel, 2021. "Kinetic Parameters of Nut Shells Pyrolysis," Energies, MDPI, vol. 14(3), pages 1-22, January.
    9. Luigi Pari & Alessandro Suardi & Walter Stefanoni & Francesco Latterini & Nadia Palmieri, 2020. "Environmental and Economic Assessment of Castor Oil Supply Chain: A Case Study," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    10. Teddy Ireen Kantoro Mathabatha & Anthony Njuguna Matheri & Mohamed Belaid, 2023. "Peanut Shell-Derived Biochar as a Low-Cost Adsorbent to Extract Cadmium, Chromium, Lead, Copper, and Zinc (Heavy Metals) from Wastewater: Circular Economy Approach," Circular Economy and Sustainability,, Springer.
    11. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Alberto-Jesus Perea-Moreno, 2018. "Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings," Sustainability, MDPI, vol. 10(10), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    2. Alberto Cerezo-Narváez & María-José Bastante-Ceca & José-María Piñero-Vilela, 2021. "Economic and Environmental Assessment on Implementing Solar Renewable Energy Systems in Spanish Residential Homes," Energies, MDPI, vol. 14(14), pages 1-39, July.
    3. Alfredo Alcayde & Francisco G. Montoya & Raul Baños & Alberto-Jesús Perea-Moreno & Francisco Manzano-Agugliaro, 2018. "Analysis of Research Topics and Scientific Collaborations in Renewable Energy Using Community Detection," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    4. Luisa F. Cabeza & Marta Chàfer & Érika Mata, 2020. "Comparative Analysis of Web of Science and Scopus on the Energy Efficiency and Climate Impact of Buildings," Energies, MDPI, vol. 13(2), pages 1-24, January.
    5. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    6. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    7. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    8. Stephan Kigle & Michael Ebner & Andrej Guminski, 2022. "Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System," Energies, MDPI, vol. 15(4), pages 1-18, February.
    9. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    10. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    11. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    12. Carmen de la Cruz-Lovera & Francisco Manzano-Agugliaro & Esther Salmerón-Manzano & José-Luis de la Cruz-Fernández & Alberto-Jesus Perea-Moreno, 2019. "Date Seeds ( Phoenix dactylifera L. ) Valorization for Boilers in the Mediterranean Climate," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    13. Esther Salmerón-Manzano & Jose Antonio Garrido-Cardenas & Francisco Manzano-Agugliaro, 2020. "Worldwide Research Trends on Medicinal Plants," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    14. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    15. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    16. Esther Salmerón-Manzano & Francisco Manzano-Agugliaro, 2018. "The Higher Education Sustainability through Virtual Laboratories: The Spanish University as Case of Study," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    17. Ainur Tukhtamisheva & Dinar Adilova & Karolis Banionis & Aurelija Levinskytė & Raimondas Bliūdžius, 2020. "Optimization of the Thermal Insulation Level of Residential Buildings in the Almaty Region of Kazakhstan," Energies, MDPI, vol. 13(18), pages 1-16, September.
    18. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    19. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    20. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3254-:d:169314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.