IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6950d10.1038_nature01833.html
   My bibliography  Save this article

Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa

Author

Listed:
  • Catherine M. O'Reilly

    (University of Arizona
    Vassar College)

  • Simone R. Alin

    (University of Arizona
    University of Minnesota)

  • Pierre-Denis Plisnier

    (Royal Museum for Central Africa
    Namur University)

  • Andrew S. Cohen

    (University of Arizona)

  • Brent A. McKee

    (Tulane University)

Abstract

Although the effects of climate warming on the chemical and physical properties of lakes have been documented1, biotic and ecosystem-scale responses to climate change have been only estimated or predicted by manipulations and models1. Here we present evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa. This lake has historically supported a highly productive pelagic fishery that currently provides 25–40% of the animal protein supply for the populations of the surrounding countries2. In parallel with regional warming patterns since the beginning of the twentieth century, a rise in surface-water temperature has increased the stability of the water column. A regional decrease in wind velocity has contributed to reduced mixing, decreasing deep-water nutrient upwelling and entrainment into surface waters. Carbon isotope records in sediment cores suggest that primary productivity may have decreased by about 20%, implying a roughly 30% decrease in fish yields. Our study provides evidence that the impact of regional effects of global climate change on aquatic ecosystem functions and services can be larger than that of local anthropogenic activity or overfishing.

Suggested Citation

  • Catherine M. O'Reilly & Simone R. Alin & Pierre-Denis Plisnier & Andrew S. Cohen & Brent A. McKee, 2003. "Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa," Nature, Nature, vol. 424(6950), pages 766-768, August.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6950:d:10.1038_nature01833
    DOI: 10.1038/nature01833
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01833
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elaine Aparecida Rodrigues & Maurício Lamano Ferreira & Amanda Rodrigues de Carvalho & José Oscar William Vega Bustillos & Rodrigo Antonio Braga Moraes Victor & Marcelo Gomes Sodré & Delvonei Alves de, 2022. "Land, Water, and Climate Issues in Large and Megacities under the Lens of Nuclear Science: An Approach for Achieving Sustainable Development Goal (SDG11)," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    2. Muhammad Azher Bhatti & Sosheel Solomon Godfrey & Ryan H. L. Ip & Chipo Kachiwala & Håvard Hovdhaugen & Liveness J. Banda & Moses Limuwa & Peter C. Wynn & Tormod Ådnøy & Lars Olav Eik, 2021. "Diversity of Sources of Income for Smallholder Farming Communities in Malawi: Importance for Improved Livelihood," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    3. Gideon Bulengela & Paul Onyango & Joan Brehm & Peter A. Staehr & Emmanuel Sweke, 2020. "“Bring fishermen at the center”: the value of local knowledge for understanding fisheries resources and climate-related changes in Lake Tanganyika," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5621-5649, August.
    4. Hye Lee & Eun Kim & Seok Park & Jung Choi, 2012. "Effects of climate change on the thermal structure of lakes in the Asian Monsoon Area," Climatic Change, Springer, vol. 112(3), pages 859-880, June.
    5. Read, Jordan S. & Winslow, Luke A. & Hansen, Gretchen J.A. & Van Den Hoek, Jamon & Hanson, Paul C. & Bruce, Louise C. & Markfort, Corey D., 2014. "Simulating 2368 temperate lakes reveals weak coherence in stratification phenology," Ecological Modelling, Elsevier, vol. 291(C), pages 142-150.
    6. Liu, Junguo & Kattel, Giri & Arp, Hans Peter H. & Yang, Hong, 2015. "Towards threshold-based management of freshwater ecosystems in the context of climate change," Ecological Modelling, Elsevier, vol. 318(C), pages 265-274.
    7. Darwall, William R.T. & Allison, Edward H. & Turner, George F. & Irvine, Kenneth, 2010. "Lake of flies, or lake of fish? A trophic model of Lake Malawi," Ecological Modelling, Elsevier, vol. 221(4), pages 713-727.
    8. Edison D. Macusi & Nitcel Aymie Albarido & Misael B. Clapano & Mudjekeewis D. Santos, 2022. "Vulnerability Assessment of Pacific Whiteleg Shrimp ( Penaeus vannamei ) Farms and Vendors in Davao, Philippines Using FishVool," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    9. Makidul Islam Khan & Goutam Kumar Kundu & Mosammat Salma Akter & Bishawjit Mallick & Md. Monirul Islam, 2018. "Climatic Impacts and Responses of Migratory and Non-Migratory Fishers of the Padma River, Bangladesh," Social Sciences, MDPI, vol. 7(12), pages 1-19, December.
    10. Israt Jahan & Dewan Ahsan & Md Hasan Farque, 2017. "Fishers’ local knowledge on impact of climate change and anthropogenic interferences on Hilsa fishery in South Asia: evidence from Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 461-478, April.
    11. Lacey A. Mason & Catherine M. Riseng & Andrew D. Gronewold & Edward S. Rutherford & Jia Wang & Anne Clites & Sigrid D. P. Smith & Peter B. McIntyre, 2016. "Fine-scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes," Climatic Change, Springer, vol. 138(1), pages 71-83, September.
    12. Fetahi, Tadesse & Schagerl, Michael & Mengistou, Seyoum & Libralato, Simone, 2011. "Food web structure and trophic interactions of the tropical highland lake Hayq, Ethiopia," Ecological Modelling, Elsevier, vol. 222(3), pages 804-813.
    13. Konstantinos Stefanidis & George Varlas & Anastasios Papadopoulos & Elias Dimitriou, 2021. "Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece," Sustainability, MDPI, vol. 13(17), pages 1-14, September.
    14. Kahsay, Goytom Abraha & Hansen, Lars Gårn, 2016. "The effect of climate change and adaptation policy on agricultural production in Eastern Africa," Ecological Economics, Elsevier, vol. 121(C), pages 54-64.
    15. Sebastiano Piccolroaz & Marco Toffolon, 2018. "The fate of Lake Baikal: how climate change may alter deep ventilation in the largest lake on Earth," Climatic Change, Springer, vol. 150(3), pages 181-194, October.
    16. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno, 2018. "Peanut Shell for Energy: Properties and Its Potential to Respect the Environment," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    17. de Bruin, Kelly & Ayuba, Victoria, 2020. "What does Paris mean for Africa? An Integrated Assessment analysis of the effects of the Paris Agreement on African economies," Papers WP690, Economic and Social Research Institute (ESRI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6950:d:10.1038_nature01833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.