IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8207-d696687.html
   My bibliography  Save this article

Knowledge Management in Households about Energy Saving as Part of the Awareness of Sustainable Development

Author

Listed:
  • Justyna Żywiołek

    (Faculty of Management, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

  • Joanna Rosak-Szyrocka

    (Faculty of Management, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

  • Maciej Mrowiec

    (Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

Abstract

Energy conservation is a popular topic in scientific research today, despite the specific effects of energy conservation awareness still being investigated. Significant research about this topic has been performed in different countries. However, the research conducted so far concerns methods of energy saving, a building’s energy efficiency and new technologies; however, a significant part of society will live in technologically old buildings for a long time, which requires the involvement of consumers to save energy. To explain how energy-saving awareness plays a role in energy-saving behavior, this study will take city dwellers as a research facility and integrate relevant literature and disciplines, such as information and knowledge management, with the mechanistic study of how energy-saving awareness influences behavior that conserves energy and establishes a sensible behavior model. The survey was conducted in Poland, Portugal and Italy with over 18,000 people who declared that they are responsible for managing the household. In addition to the quantitative and qualitative research defining the percentage of behavior, the research group gave answers to the assessment of energy management, both assessing itself and the activities carried out in its own households on the Likert scale. The SERVPERF method was used for this. The results of the study clearly show that not only do economic factors affect energy saving, but also an informed society that cares about resource management. The research carried out presents the measures undertaken to save energy, and also identifies the level of knowledge and behavior that reflect pro-ecological trends and care for the sustainable development of the city, country and one’s own household.

Suggested Citation

  • Justyna Żywiołek & Joanna Rosak-Szyrocka & Maciej Mrowiec, 2021. "Knowledge Management in Households about Energy Saving as Part of the Awareness of Sustainable Development," Energies, MDPI, vol. 14(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8207-:d:696687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foege, J. Nils & Lauritzen, Ghita Dragsdahl & Tietze, Frank & Salge, Torsten Oliver, 2019. "Reconceptualizing the paradox of openness: How solvers navigate sharing-protecting tensions in crowdsourcing," Research Policy, Elsevier, vol. 48(6), pages 1323-1339.
    2. Sotaro Shibayama, 2015. "Academic commercialization and changing nature of academic cooperation," Journal of Evolutionary Economics, Springer, vol. 25(2), pages 513-532, April.
    3. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    4. Justyna Żywiołek & Francesco Schiavone, 2021. "Perception of the Quality of Smart City Solutions as a Sense of Residents’ Safety," Energies, MDPI, vol. 14(17), pages 1-16, September.
    5. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible," Energy, Elsevier, vol. 35(5), pages 2164-2173.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    7. Vicente-Saez, Ruben & Martinez-Fuentes, Clara, 2018. "Open Science now: A systematic literature review for an integrated definition," Journal of Business Research, Elsevier, vol. 88(C), pages 428-436.
    8. Alberg Østergaard, Poul & Mathiesen, Brian Vad & Möller, Bernd & Lund, Henrik, 2010. "A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass," Energy, Elsevier, vol. 35(12), pages 4892-4901.
    9. Andrew J. Nelson, 2016. "How to Share “A Really Good Secret”: Managing Sharing/Secrecy Tensions Around Scientific Knowledge Disclosure," Organization Science, INFORMS, vol. 27(2), pages 265-285, April.
    10. Young, Denise, 2008. "When do energy-efficient appliances generate energy savings? Some evidence from Canada," Energy Policy, Elsevier, vol. 36(1), pages 34-46, January.
    11. Dahlander, Linus & Gann, David M., 2010. "How open is innovation?," Research Policy, Elsevier, vol. 39(6), pages 699-709, July.
    12. Gabriel Valerio-Ureña & Richard Rogers, 2019. "Characteristics of the Digital Content about Energy-Saving in Different Countries around the World," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
    13. Radosław Wolniak & Sebastian Saniuk & Sandra Grabowska & Bożena Gajdzik, 2020. "Identification of Energy Efficiency Trends in the Context of the Development of Industry 4.0 Using the Polish Steel Sector as an Example," Energies, MDPI, vol. 13(11), pages 1-16, June.
    14. Haeussler, Carolin & Jiang, Lin & Thursby, Jerry & Thursby, Marie, 2014. "Specific and general information sharing among competing academic researchers," Research Policy, Elsevier, vol. 43(3), pages 465-475.
    15. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    2. Arkadiusz Kampczyk & Wojciech Gamon & Katarzyna Gawlak, 2023. "Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics," Energies, MDPI, vol. 16(6), pages 1-23, March.
    3. Sunil Tiwari & Joanna Rosak-Szyrocka & Justyna Żywiołek, 2022. "Internet of Things as a Sustainable Energy Management Solution at Tourism Destinations in India," Energies, MDPI, vol. 15(7), pages 1-20, March.
    4. Justyna Żywiołek & Joanna Rosak-Szyrocka & Muhammad Asghar Khan & Arshian Sharif, 2022. "Trust in Renewable Energy as Part of Energy-Saving Knowledge," Energies, MDPI, vol. 15(4), pages 1-14, February.
    5. Joanna Rosak-Szyrocka & Justyna Żywiołek & Maciej Mrowiec, 2022. "Analysis of Customer Satisfaction with the Quality of Energy Market Services in Poland," Energies, MDPI, vol. 15(10), pages 1-24, May.
    6. Joanna Rosak-Szyrocka & Justyna Żywiołek, 2022. "Qualitative Analysis of Household Energy Awareness in Poland," Energies, MDPI, vol. 15(6), pages 1-16, March.
    7. Marian Kampik & Marcin Fice & Adam Pilśniak & Krzysztof Bodzek & Anna Piaskowy, 2023. "An Analysis of Energy Consumption in Small- and Medium-Sized Buildings," Energies, MDPI, vol. 16(3), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justyna Żywiołek & Joanna Rosak-Szyrocka & Muhammad Asghar Khan & Arshian Sharif, 2022. "Trust in Renewable Energy as Part of Energy-Saving Knowledge," Energies, MDPI, vol. 15(4), pages 1-14, February.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    4. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    5. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    7. Mahbub, Md Shahriar & Cozzini, Marco & Østergaard, Poul Alberg & Alberti, Fabrizio, 2016. "Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design," Applied Energy, Elsevier, vol. 164(C), pages 140-151.
    8. Djørup, Søren & Thellufsen, Jakob Zinck & Sorknæs, Peter, 2018. "The electricity market in a renewable energy system," Energy, Elsevier, vol. 162(C), pages 148-157.
    9. Langlois, Jonathan & BenMahmoud-Jouini, Sihem & Servajean-Hilst, Romaric, 2023. "Practicing secrecy in open innovation – The case of a military firm," Research Policy, Elsevier, vol. 52(1).
    10. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    11. Mahbub, Md Shahriar & Viesi, Diego & Crema, Luigi, 2016. "Designing optimized energy scenarios for an Italian Alpine valley: the case of Giudicarie Esteriori," Energy, Elsevier, vol. 116(P1), pages 236-249.
    12. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    13. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    14. Thellufsen, Jakob Zinck & Lund, Henrik, 2016. "Roles of local and national energy systems in the integration of renewable energy," Applied Energy, Elsevier, vol. 183(C), pages 419-429.
    15. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    16. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    17. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    18. Grundahl, Lars & Nielsen, Steffen & Lund, Henrik & Möller, Bernd, 2016. "Comparison of district heating expansion potential based on consumer-economy or socio-economy," Energy, Elsevier, vol. 115(P3), pages 1771-1778.
    19. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    20. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8207-:d:696687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.