IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v65y2014icp1-17.html
   My bibliography  Save this article

MES (multi-energy systems): An overview of concepts and evaluation models

Author

Listed:
  • Mancarella, Pierluigi

Abstract

MES (multi-energy systems) whereby electricity, heat, cooling, fuels, transport, and so on optimally interact with each other at various levels (for instance, within a district, city or region) represent an important opportunity to increase technical, economic and environmental performance relative to “classical” energy systems whose sectors are treated “separately” or “independently”. This performance improvement can take place at both the operational and the planning stage. While such systems and in particular systems with distributed generation of multiple energy vectors (DMG (distributed multi-generation)) can be a key option to decarbonize the energy sector, the approaches needed to model and relevant tools to analyze them are often of great complexity. Likewise, it is not straightforward to identify performance metrics that are capable to properly capture costs and benefits that are relating to various types of MES according to different criteria. The aim of this invited paper is thus to provide the reader with a comprehensive and critical overview of the latest models and assessment techniques that are currently available to analyze MES and in particular DMG systems, including for instance concepts such as energy hubs, microgrids, and VPPs (virtual power plants), as well as various approaches and criteria for energy, environmental, and techno-economic assessment.

Suggested Citation

  • Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
  • Handle: RePEc:eee:energy:v:65:y:2014:i:c:p:1-17
    DOI: 10.1016/j.energy.2013.10.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008931
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    2. van Dyken, Silke & Bakken, Bjorn H. & Skjelbred, Hans I., 2010. "Linear mixed-integer models for biomass supply chains with transport, storage and processing," Energy, Elsevier, vol. 35(3), pages 1338-1350.
    3. Gota, Dan-Ioan & Lund, Henrik & Miclea, Liviu, 2011. "A Romanian energy system model and a nuclear reduction strategy," Energy, Elsevier, vol. 36(11), pages 6413-6419.
    4. Frangopoulos, Christos A., 2012. "A method to determine the power to heat ratio, the cogenerated electricity and the primary energy savings of cogeneration systems after the European Directive," Energy, Elsevier, vol. 45(1), pages 52-61.
    5. Westner, Günther & Madlener, Reinhard, 2012. "Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis," Energy Economics, Elsevier, vol. 34(1), pages 31-44.
    6. Kusch, Wolfgang & Schmidla, Tim & Stadler, Ingo, 2012. "Consequences for district heating and natural gas grids when aiming towards 100% electricity supply with renewables," Energy, Elsevier, vol. 48(1), pages 153-159.
    7. Niemi, R. & Mikkola, J. & Lund, P.D., 2012. "Urban energy systems with smart multi-carrier energy networks and renewable energy generation," Renewable Energy, Elsevier, vol. 48(C), pages 524-536.
    8. Siddiqui, Afzal S. & Maribu, Karl, 2009. "Investment and upgrade in distributed generation under uncertainty," Energy Economics, Elsevier, vol. 31(1), pages 25-37, January.
    9. Zhou, Wei & Yang, Hongxing & Rissanen, Markku & Nygren, Bertil & Yan, Jinyue, 2012. "Decrease of energy demand for bioethanol-based polygeneration system through case study," Applied Energy, Elsevier, vol. 95(C), pages 305-311.
    10. Carpaneto, Enrico & Chicco, Gianfranco & Mancarella, Pierluigi & Russo, Angela, 2011. "Cogeneration planning under uncertainty: Part I: Multiple time frame approach," Applied Energy, Elsevier, vol. 88(4), pages 1059-1067, April.
    11. Rong, Aiying & Lahdelma, Risto, 2007. "CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1874-1895, February.
    12. Lund, H & Münster, E, 2003. "Modelling of energy systems with a high percentage of CHP and wind power," Renewable Energy, Elsevier, vol. 28(14), pages 2179-2193.
    13. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.
    14. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    15. Fabrizio, Enrico & Corrado, Vincenzo & Filippi, Marco, 2010. "A model to design and optimize multi-energy systems in buildings at the design concept stage," Renewable Energy, Elsevier, vol. 35(3), pages 644-655.
    16. Karlsson, Magnus & Gebremedhin, Alemayehu & Klugman, Sofia & Henning, Dag & Moshfegh, Bahram, 2009. "Regional energy system optimization - Potential for a regional heat market," Applied Energy, Elsevier, vol. 86(4), pages 441-451, April.
    17. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2013. "Development and assessment of an integrated biomass-based multi-generation energy system," Energy, Elsevier, vol. 56(C), pages 155-166.
    18. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    19. Wickart, Marcel & Madlener, Reinhard, 2007. "Optimal technology choice and investment timing: A stochastic model of industrial cogeneration vs. heat-only production," Energy Economics, Elsevier, vol. 29(4), pages 934-952, July.
    20. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    21. Kyriakarakos, George & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2012. "A fuzzy logic energy management system for polygeneration microgrids," Renewable Energy, Elsevier, vol. 41(C), pages 315-327.
    22. Mathiesen, B.V. & Lund, H. & Nørgaard, P., 2008. "Integrated transport and renewable energy systems," Utilities Policy, Elsevier, vol. 16(2), pages 107-116, June.
    23. Girardin, Luc & Marechal, François & Dubuis, Matthias & Calame-Darbellay, Nicole & Favrat, Daniel, 2010. "EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas," Energy, Elsevier, vol. 35(2), pages 830-840.
    24. Brkić, Dejan & Tanasković, Toma I., 2008. "Systematic approach to natural gas usage for domestic heating in urban areas," Energy, Elsevier, vol. 33(12), pages 1738-1753.
    25. Serra, Luis M. & Lozano, Miguel-Angel & Ramos, Jose & Ensinas, Adriano V. & Nebra, Silvia A., 2009. "Polygeneration and efficient use of natural resources," Energy, Elsevier, vol. 34(5), pages 575-586.
    26. Nosrat, Amir H. & Swan, Lukas G. & Pearce, Joshua M., 2013. "Improved performance of hybrid photovoltaic-trigeneration systems over photovoltaic-cogen systems including effects of battery storage," Energy, Elsevier, vol. 49(C), pages 366-374.
    27. Carvalho, Monica & Serra, Luis Maria & Lozano, Miguel Angel, 2011. "Optimal synthesis of trigeneration systems subject to environmental constraints," Energy, Elsevier, vol. 36(6), pages 3779-3790.
    28. Piacentino, Antonio & Barbaro, Chiara, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part II: Analysis of the applicative potential," Applied Energy, Elsevier, vol. 111(C), pages 1222-1238.
    29. Raj, N. Thilak & Iniyan, S. & Goic, Ranko, 2011. "A review of renewable energy based cogeneration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3640-3648.
    30. Arcuri, P. & Florio, G. & Fragiacomo, P., 2007. "A mixed integer programming model for optimal design of trigeneration in a hospital complex," Energy, Elsevier, vol. 32(8), pages 1430-1447.
    31. Daianova, L. & Dotzauer, E. & Thorin, E. & Yan, J., 2012. "Evaluation of a regional bioenergy system with local production of biofuel for transportation, integrated with a CHP plant," Applied Energy, Elsevier, vol. 92(C), pages 739-749.
    32. Al-Mansour, Fouad & Kožuh, Mitja, 2007. "Risk analysis for CHP decision making within the conditions of an open electricity market," Energy, Elsevier, vol. 32(10), pages 1905-1916.
    33. Buoro, D. & Casisi, M. & De Nardi, A. & Pinamonti, P. & Reini, M., 2013. "Multicriteria optimization of a distributed energy supply system for an industrial area," Energy, Elsevier, vol. 58(C), pages 128-137.
    34. Rubio-Maya, Carlos & Uche-Marcuello, Javier & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A., 2011. "Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources," Applied Energy, Elsevier, vol. 88(2), pages 449-457, February.
    35. Chicco, Gianfranco & Mancarella, Pierluigi, 2007. "Trigeneration primary energy saving evaluation for energy planning and policy development," Energy Policy, Elsevier, vol. 35(12), pages 6132-6144, December.
    36. Cardona, E. & Piacentino, A., 2005. "Cogeneration: a regulatory framework toward growth," Energy Policy, Elsevier, vol. 33(16), pages 2100-2111, November.
    37. Svensson, Elin & Strömberg, Ann-Brith & Patriksson, Michael, 2011. "A model for optimization of process integration investments under uncertainty," Energy, Elsevier, vol. 36(5), pages 2733-2746.
    38. Carpaneto, Enrico & Chicco, Gianfranco & Mancarella, Pierluigi & Russo, Angela, 2011. "Cogeneration planning under uncertainty. Part II: Decision theory-based assessment of planning alternatives," Applied Energy, Elsevier, vol. 88(4), pages 1075-1083, April.
    39. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    40. Menon, Ramanunni P. & Paolone, Mario & Maréchal, François, 2013. "Study of optimal design of polygeneration systems in optimal control strategies," Energy, Elsevier, vol. 55(C), pages 134-141.
    41. Mancarella, Pierluigi & Chicco, Gianfranco, 2009. "Global and local emission impact assessment of distributed cogeneration systems with partial-load models," Applied Energy, Elsevier, vol. 86(10), pages 2096-2106, October.
    42. Bruckner, Th. & Groscurth, H.-M. & Kümmel, R., 1997. "Competition and synergy between energy technologies in municipal energy systems," Energy, Elsevier, vol. 22(10), pages 1005-1014.
    43. Roque Díaz, P. & Benito, Y.R. & Parise, J.A.R., 2010. "Thermoeconomic assessment of a multi-engine, multi-heat-pump CCHP (combined cooling, heating and power generation) system – A case study," Energy, Elsevier, vol. 35(9), pages 3540-3550.
    44. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    45. Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2013. "Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area," Energy, Elsevier, vol. 55(C), pages 1014-1024.
    46. Mendes, Gonçalo & Ioakimidis, Christos & Ferrão, Paulo, 2011. "On the planning and analysis of Integrated Community Energy Systems: A review and survey of available tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4836-4854.
    47. Weber, C. & Shah, N., 2011. "Optimisation based design of a district energy system for an eco-town in the United Kingdom," Energy, Elsevier, vol. 36(2), pages 1292-1308.
    48. Bakken, Bjorn H. & Skjelbred, Hans I. & Wolfgang, Ove, 2007. "eTransport: Investment planning in energy supply systems with multiple energy carriers," Energy, Elsevier, vol. 32(9), pages 1676-1689.
    49. Münster, Marie & Meibom, Peter, 2011. "Optimization of use of waste in the future energy system," Energy, Elsevier, vol. 36(3), pages 1612-1622.
    50. Voll, Philip & Klaffke, Carsten & Hennen, Maike & Bardow, André, 2013. "Automated superstructure-based synthesis and optimization of distributed energy supply systems," Energy, Elsevier, vol. 50(C), pages 374-388.
    51. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    52. Dincer, Ibrahim, 1999. "Environmental impacts of energy," Energy Policy, Elsevier, vol. 27(14), pages 845-854, December.
    53. Piacentino, Antonio & Barbaro, Chiara & Cardona, Fabio & Gallea, Roberto & Cardona, Ennio, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part I: Description of the method," Applied Energy, Elsevier, vol. 111(C), pages 1204-1221.
    54. Aki, Hirohisa & Oyama, Tsutomu & Tsuji, Kiichiro, 2006. "Analysis of energy service systems in urban areas and their CO2 mitigations and economic impacts," Applied Energy, Elsevier, vol. 83(10), pages 1076-1088, October.
    55. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2013. "Hierarchical market integration of responsive loads as spinning reserve," Applied Energy, Elsevier, vol. 104(C), pages 229-238.
    56. Maraver, Daniel & Sin, Ana & Sebastián, Fernando & Royo, Javier, 2013. "Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation," Energy, Elsevier, vol. 57(C), pages 17-23.
    57. He, Chang & Feng, Xiao, 2012. "Evaluation indicators for energy-chemical systems with multi-feed and multi-product," Energy, Elsevier, vol. 43(1), pages 344-354.
    58. Pini Prato, Alessandro & Strobino, Fabrizio & Broccardo, Marco & Parodi Giusino, Luigi, 2012. "Integrated management of cogeneration plants and district heating networks," Applied Energy, Elsevier, vol. 97(C), pages 590-600.
    59. Peng, T. & Lu, H.F. & Wu, W.L. & Campbell, D.E. & Zhao, G.S. & Zou, J.H. & Chen, J., 2008. "Should a small combined heat and power plant (CHP) open to its regional power and heat networks? Integrated economic, energy, and emergy evaluation of optimization plans for Jiufa CHP," Energy, Elsevier, vol. 33(3), pages 437-445.
    60. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
    61. Keirstead, James & Samsatli, Nouri & Shah, Nilay & Weber, Céline, 2012. "The impact of CHP (combined heat and power) planning restrictions on the efficiency of urban energy systems," Energy, Elsevier, vol. 41(1), pages 93-103.
    62. Weber, Céline & Favrat, Daniel, 2010. "Conventional and advanced CO2 based district energy systems," Energy, Elsevier, vol. 35(12), pages 5070-5081.
    63. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.
    64. Kyriakarakos, George & Piromalis, Dimitrios D. & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2013. "Intelligent demand side energy management system for autonomous polygeneration microgrids," Applied Energy, Elsevier, vol. 103(C), pages 39-51.
    65. Pirouti, Marouf & Bagdanavicius, Audrius & Ekanayake, Janaka & Wu, Jianzhong & Jenkins, Nick, 2013. "Energy consumption and economic analyses of a district heating network," Energy, Elsevier, vol. 57(C), pages 149-159.
    66. Westner, Günther & Madlener, Reinhard, 2011. "Development of cogeneration in Germany: A mean-variance portfolio analysis of individual technology’s prospects in view of the new regulatory framework," Energy, Elsevier, vol. 36(8), pages 5301-5313.
    67. Deng, Jian & Wang, Ruzhu & Wu, Jingyi & Han, Guyong & Wu, Dawei & Li, Sheng, 2008. "Exergy cost analysis of a micro-trigeneration system based on the structural theory of thermoeconomics," Energy, Elsevier, vol. 33(9), pages 1417-1426.
    68. Lozano, M.A. & Carvalho, M. & Serra, L.M., 2009. "Operational strategy and marginal costs in simple trigeneration systems," Energy, Elsevier, vol. 34(11), pages 2001-2008.
    69. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    70. Sciubba, Enrico, 2010. "On the Second-Law inconsistency of Emergy Analysis," Energy, Elsevier, vol. 35(9), pages 3696-3706.
    71. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    72. Lazzaretto, Andrea, 2009. "A critical comparison between thermoeconomic and emergy analyses algebra," Energy, Elsevier, vol. 34(12), pages 2196-2205.
    73. Yang, Christopher, 2008. "Hydrogen and electricity: Parallels, interactions,and convergence," Institute of Transportation Studies, Working Paper Series qt0p14s1cg, Institute of Transportation Studies, UC Davis.
    74. Torchio, Marco F. & Genon, Giuseppe & Poggio, Alberto & Poggio, Marco, 2009. "Merging of energy and environmental analyses for district heating systems," Energy, Elsevier, vol. 34(3), pages 220-227.
    75. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Matrix modelling of small-scale trigeneration systems and application to operational optimization," Energy, Elsevier, vol. 34(3), pages 261-273.
    76. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    77. Tabasová, Andrea & Kropáč, Jiří & Kermes, Vít & Nemet, Andreja & Stehlík, Petr, 2012. "Waste-to-energy technologies: Impact on environment," Energy, Elsevier, vol. 44(1), pages 146-155.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:65:y:2014:i:c:p:1-17. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.