IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v49y2013icp366-374.html
   My bibliography  Save this article

Improved performance of hybrid photovoltaic-trigeneration systems over photovoltaic-cogen systems including effects of battery storage

Author

Listed:
  • Nosrat, Amir H.
  • Swan, Lukas G.
  • Pearce, Joshua M.

Abstract

Recent work has proposed that hybridization of residential-scale cogeneration with roof-mounted solar PV (photovoltaic) arrays can increase the PV penetration level in ideal situations by a factor of five. In regions where there is a significant cooling load PV-cogen hybrid systems could be coupled to an absorption chiller to utilize waste heat from the cogen unit. In order to investigate realistic (non-ideal) loads that such a hybrid system would need to service, a new numerical simulation called PVTOM (PV-trigeneration optimization model) was created and coupled to the results of the established CHREM (Canadian Hybrid Residential End-Use Energy and Emissions Model). In this paper, PVTOM is applied to representative houses in select Canadian regions, which experience cooling loads, to assess the fuel utilization efficiency and reduction in greenhouse gas emissions from hybrid PV-cogen and trigen systems in comparison with conventional systems. Results of the optimization runs are provided and the efficacy of PV-cogen and PV-trigen systems is discussed. Both PV-trigen and PV-cogen systems have demonstrated to be more effective at reducing emissions when compared to the current combination of centralized power plants and household heating technologies in some regions.

Suggested Citation

  • Nosrat, Amir H. & Swan, Lukas G. & Pearce, Joshua M., 2013. "Improved performance of hybrid photovoltaic-trigeneration systems over photovoltaic-cogen systems including effects of battery storage," Energy, Elsevier, vol. 49(C), pages 366-374.
  • Handle: RePEc:eee:energy:v:49:y:2013:i:c:p:366-374 DOI: 10.1016/j.energy.2012.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212008420
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pearce, J.M., 2009. "Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems," Energy, Elsevier, vol. 34(11), pages 1947-1954.
    2. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    3. Jacob Funk Kirkegaard & Thilo Hanemann & Lutz Weischer & Matt Miller, 2010. "Toward a Sunny Future? Global Integration in the Solar PV Industry," Working Paper Series WP10-6, Peterson Institute for International Economics.
    4. Branker, K. & Pearce, J.M., 2010. "Financial return for government support of large-scale thin-film solar photovoltaic manufacturing in Canada," Energy Policy, Elsevier, vol. 38(8), pages 4291-4303, August.
    5. Hernández-Santoyo, Joel & Sánchez-Cifuentes, Augusto, 2003. "Trigeneration: an alternative for energy savings," Applied Energy, Elsevier, pages 219-227.
    6. Srikhirin, Pongsid & Aphornratana, Satha & Chungpaibulpatana, Supachart, 2001. "A review of absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 343-372, December.
    7. Kenny, R. & Law, C. & Pearce, J.M., 2010. "Towards real energy economics: Energy policy driven by life-cycle carbon emission," Energy Policy, Elsevier, vol. 38(4), pages 1969-1978, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
    2. repec:eee:rensus:v:80:y:2017:i:c:p:710-715 is not listed on IDEAS
    3. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Impact analysis of sampling time interval and battery installation on optimal operational planning of residential cogeneration systems without electric power export," Energy, Elsevier, vol. 81(C), pages 120-136.
    4. Basrawi, Firdaus & Yamada, Takanobu & Obara, Shin’ya, 2014. "Economic and environmental based operation strategies of a hybrid photovoltaic–microgas turbine trigeneration system," Applied Energy, Elsevier, pages 174-183.
    5. Romero Rodríguez, Laura & Salmerón Lissén, José Manuel & Sánchez Ramos, José & Rodríguez Jara, Enrique Ángel & Álvarez Domínguez, Servando, 2016. "Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems," Applied Energy, Elsevier, pages 828-838.
    6. Kantamneni, Abhilash & Winkler, Richelle & Gauchia, Lucia & Pearce, Joshua M., 2016. "Emerging economic viability of grid defection in a northern climate using solar hybrid systems," Energy Policy, Elsevier, vol. 95(C), pages 378-389.
    7. Mojica, Jose L. & Petersen, Damon & Hansen, Brigham & Powell, Kody M. & Hedengren, John D., 2017. "Optimal combined long-term facility design and short-term operational strategy for CHP capacity investments," Energy, Elsevier, vol. 118(C), pages 97-115.
    8. repec:eee:rensus:v:78:y:2017:i:c:p:167-175 is not listed on IDEAS
    9. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    10. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    11. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    12. Soheyli, Saman & Shafiei Mayam, Mohamad Hossein & Mehrjoo, Mehri, 2016. "Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm," Applied Energy, Elsevier, pages 375-395.
    13. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    14. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, pages 418-433.
    15. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, Open Access Journal, vol. 8(8), pages 1-21, August.
    16. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, pages 138-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:49:y:2013:i:c:p:366-374. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.