IDEAS home Printed from
   My bibliography  Save this article

Emerging economic viability of grid defection in a northern climate using solar hybrid systems


  • Kantamneni, Abhilash
  • Winkler, Richelle
  • Gauchia, Lucia
  • Pearce, Joshua M.


High demand for photovoltaic (PV), battery, and small-scale combined heat and power (CHP) technologies are driving a virtuous cycle of technological improvements and cost reductions in off-grid electric systems that increasingly compete with the grid market. Using a case study in the Upper Peninsula of Michigan, this paper quantifies the economic viability of off-grid PV+battery+CHP adoption and evaluates potential implications for grid-based utility models. The analysis shows that already some households could save money by switching to a solar hybrid off-grid system in comparison to the effective electric rates they are currently paying. Across the region by 2020, 92% of seasonal households and ~75% of year-round households are projected to meet electricity demands with lower costs. Furthermore, ~65% of all Upper Peninsula single-family owner-occupied households will both meet grid parity and be able to afford the systems by 2020. The results imply that economic circumstances could spur a positive feedback loop whereby grid electricity prices continue to rise and increasing numbers of customers choose alternatives (sometimes referred to as a “utility death spiral”), particularly in areas with relatively high electric utility rates. Utility companies and policy makers must take the potential for grid defection seriously when evaluating energy supply strategies.

Suggested Citation

  • Kantamneni, Abhilash & Winkler, Richelle & Gauchia, Lucia & Pearce, Joshua M., 2016. "Emerging economic viability of grid defection in a northern climate using solar hybrid systems," Energy Policy, Elsevier, vol. 95(C), pages 378-389.
  • Handle: RePEc:eee:enepol:v:95:y:2016:i:c:p:378-389 DOI: 10.1016/j.enpol.2016.05.013

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    2. Burtraw, Dallas & Linn, Joshua & Palmer, Karen & Paul, Anthony, 2014. "The Costs and Consequences of Clean Air Act Regulation of CO2 from Power Plants," Discussion Papers dp-14-01, Resources For the Future.
    3. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    4. Khalilpour, Rajab & Vassallo, Anthony, 2015. "Leaving the grid: An ambition or a real choice?," Energy Policy, Elsevier, vol. 82(C), pages 207-221.
    5. Darghouth, Naïm R. & Barbose, Galen & Wiser, Ryan H., 2014. "Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering," Energy Policy, Elsevier, vol. 67(C), pages 290-300.
    6. Richelle Winkler & Steven Deller & Dave Marcouiller, 2015. "Recreational Housing and Community Development: A Triple Bottom Line Approach," Growth and Change, Wiley Blackwell, vol. 46(3), pages 481-500, September.
    7. Pathak, M.J.M. & Sanders, P.G. & Pearce, J.M., 2014. "Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems," Applied Energy, Elsevier, vol. 120(C), pages 115-124.
    8. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    9. Pearce, J.M., 2009. "Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems," Energy, Elsevier, vol. 34(11), pages 1947-1954.
    10. Joshua Linn & Erin Mastrangelo & Dallas Burtraw, 2014. "Regulating Greenhouse Gases from Coal Power Plants under the Clean Air Act," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 97-134.
    11. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    12. Reichelstein, Stefan & Yorston, Michael, 2013. "The prospects for cost competitive solar PV power," Energy Policy, Elsevier, vol. 55(C), pages 117-127.
    13. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    14. Nosrat, Amir H. & Swan, Lukas G. & Pearce, Joshua M., 2013. "Improved performance of hybrid photovoltaic-trigeneration systems over photovoltaic-cogen systems including effects of battery storage," Energy, Elsevier, vol. 49(C), pages 366-374.
    15. Nosrat, Amir & Pearce, Joshua M., 2011. "Dispatch strategy and model for hybrid photovoltaic and trigeneration power systems," Applied Energy, Elsevier, vol. 88(9), pages 3270-3276.
    16. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2010. "Steady-state modelling of hybrid energy system for off grid electrification of cluster of villages," Renewable Energy, Elsevier, vol. 35(2), pages 520-535.
    17. Burtraw, Dallas & Palmer, Karen & Paul, Anthony & Beasley, Blair & Woerman, Matt, 2013. "Reliability in the U.S. electricity industry under new environmental regulations," Energy Policy, Elsevier, vol. 62(C), pages 1078-1091.
    18. Branker, K. & Pearce, J.M., 2010. "Financial return for government support of large-scale thin-film solar photovoltaic manufacturing in Canada," Energy Policy, Elsevier, vol. 38(8), pages 4291-4303, August.
    19. Dallas Burtraw & Josh Linn & Karen Palmer & Anthony Paul, 2014. "The Costs and Consequences of Clean Air Act Regulation of CO2 from Power Plants," American Economic Review, American Economic Association, vol. 104(5), pages 557-562, May.
    20. Enrica De Cian & Fabio Sferra & Massimo Tavoni, 2013. "The Influence of Economic Growth, Population, and Fossil Fuel Scarcity on Energy Investments," Working Papers 2013.59, Fondazione Eni Enrico Mattei.
    21. Candelise, Chiara & Winskel, Mark & Gross, Robert J.K., 2013. "The dynamics of solar PV costs and prices as a challenge for technology forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 96-107.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:rensus:v:80:y:2017:i:c:p:710-715 is not listed on IDEAS
    2. Binod Prasad Koirala & José Pablo Chaves Ávila & Tomás Gómez & Rudi A. Hakvoort & Paulien M. Herder, 2016. "Local Alternative for Energy Supply: Performance Assessment of Integrated Community Energy Systems," Energies, MDPI, Open Access Journal, vol. 9(12), pages 1-24, November.
    3. repec:eee:rensus:v:74:y:2017:i:c:p:733-745 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:95:y:2016:i:c:p:378-389. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.