IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems

Listed author(s):
  • Pathak, M.J.M.
  • Sanders, P.G.
  • Pearce, J.M.

An exergy analysis was performed to compare a conventional (1) two panel photovoltaic solar thermal hybrid (PVT x2) system, (2) side by side photovoltaic and thermal (PV+T) system, (3) two module photovoltaic (PV) system and (4) a two panel solar thermal (T x2) system with identical absorber areas to determine the superior technical solar energy systems for applications with a limited roof area. Three locations, Detroit, Denver and Phoenix, were simulated due to their differences in average monthly temperature and solar flux. The exergy analysis results show that PVT systems outperform the PV+T systems by 69% for all the locations, produce between 6.5% and 8.4% more exergy when matched against the purely PV systems and created 4 times as much exergy as the pure solar thermal system. The results clearly show that PVT systems, which are able to utilize all of the thermal and electrical energy generated, are superior in exergy performance to either PV+T or PV only systems. These results are discussed and future work is outlined to further geographically optimize PVT systems.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Applied Energy.

Volume (Year): 120 (2014)
Issue (Month): C ()
Pages: 115-124

in new window

Handle: RePEc:eee:appene:v:120:y:2014:i:c:p:115-124
DOI: 10.1016/j.apenergy.2014.01.041
Contact details of provider: Web page:

Order Information: Postal:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Agrawal, Basant & Tiwari, G.N., 2010. "Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions," Applied Energy, Elsevier, vol. 87(2), pages 417-426, February.
  2. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
  3. Erdil, Erzat & Ilkan, Mustafa & Egelioglu, Fuat, 2008. "An experimental study on energy generation with a photovoltaic (PV)–solar thermal hybrid system," Energy, Elsevier, vol. 33(8), pages 1241-1245.
  4. Amori, Karima E. & Taqi Al-Najjar, Hussein M., 2012. "Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq," Applied Energy, Elsevier, vol. 98(C), pages 384-395.
  5. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
  6. Stuart Burness & Ronald Cummings & Glenn Morris & Inja Paik, 1980. "Thermodynamic and Economic Concepts as Related to Resource-Use Policies," Land Economics, University of Wisconsin Press, vol. 56(1), pages 1-9.
  7. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
  8. Nofuentes, G. & García-Domingo, B. & Muñoz, J.V. & Chenlo, F., 2014. "Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution," Applied Energy, Elsevier, vol. 113(C), pages 302-309.
  9. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & Ji, J., 2009. "Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover," Applied Energy, Elsevier, vol. 86(3), pages 310-316, March.
  10. Siddiqui, M.U. & Arif, A.F.M., 2013. "Electrical, thermal and structural performance of a cooled PV module: Transient analysis using a multiphysics model," Applied Energy, Elsevier, vol. 112(C), pages 300-312.
  11. Lior, Noam & Zhang, Na, 2007. "Energy, exergy, and Second Law performance criteria," Energy, Elsevier, vol. 32(4), pages 281-296.
  12. Kenny, R. & Law, C. & Pearce, J.M., 2010. "Towards real energy economics: Energy policy driven by life-cycle carbon emission," Energy Policy, Elsevier, vol. 38(4), pages 1969-1978, April.
  13. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
  14. Zogou, Olympia & Stapountzis, Herricos, 2012. "Flow and heat transfer inside a PV/T collector for building application," Applied Energy, Elsevier, vol. 91(1), pages 103-115.
  15. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
  16. Kar, A.Kerim, 1985. "Exergy efficiency and optimum operation of solar collectors," Applied Energy, Elsevier, vol. 21(4), pages 301-314.
  17. Zogou, Olympia & Stapountzis, Herricos, 2011. "Energy analysis of an improved concept of integrated PV panels in an office building in central Greece," Applied Energy, Elsevier, vol. 88(3), pages 853-866, March.
  18. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
  19. Farahat, S. & Sarhaddi, F. & Ajam, H., 2009. "Exergetic optimization of flat plate solar collectors," Renewable Energy, Elsevier, vol. 34(4), pages 1169-1174.
  20. Joshi, Anand S. & Dincer, Ibrahim & Reddy, Bale V., 2009. "Performance analysis of photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1884-1897, October.
  21. Suzuki, Akio, 1988. "General theory of exergy-balance analysis and application to solar collectors," Energy, Elsevier, vol. 13(2), pages 153-160.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:120:y:2014:i:c:p:115-124. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.