IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v78y2017icp167-175.html
   My bibliography  Save this article

U.S. strategic solar photovoltaic-powered microgrid deployment for enhanced national security

Author

Listed:
  • Prehoda, Emily W.
  • Schelly, Chelsea
  • Pearce, Joshua M.

Abstract

The U.S. electrical grid, the largest and most complex man-made system in the world, is highly vulnerable to three types of external threats: 1) natural disasters, 2) intentional physical attacks, and 3) cyber-attacks. The technical community has recommended hardening the grid to make it more resilient to attack by using distributed generation and microgrids. Solar photovoltaic (PV) systems are an ideal distributed generation technology to provide power for such microgrids. However, both the deployment velocity and the policy of how to implement such technical solutions have been given far less attention than would be normally considered adequate for a national security risk. To address this threat, this paper reviews the technical and economic viability of utilizing defense contracting for the beginning of a national transition to distributed generation in the U.S. First, the technical scale of electrical demand and the solar PV system necessary is analyzed in detail to meet the first level of strategic importance: the U.S. military. The results found that about 17GW of PV would be needed to fortify the U.S. military domestically. The current domestic geographic deployment of microgrid installations in the critical U.S. defense infrastructure were reviewed and compared to historical grid failures and existing and planned PV installations to mitigate that risk. The results showed a minimal number of military bases have introduced solar PV systems, leaving large parts of the Department of Defense electrical infrastructure vulnerable to attack. To rectify this situation, the technical skills of the top 20 U.S. defense contractors is reviewed and analyzed for a potential contracting transition to grid fortification. Overall the results indicate that a fortified U.S. military grid made up of PV-powered microgrids is technically feasible, within current contractors skill sets and economically viable. Policy recommendations are made to accelerate U.S. military grid fortification.

Suggested Citation

  • Prehoda, Emily W. & Schelly, Chelsea & Pearce, Joshua M., 2017. "U.S. strategic solar photovoltaic-powered microgrid deployment for enhanced national security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 167-175.
  • Handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:167-175
    DOI: 10.1016/j.rser.2017.04.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117306081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pearce, Joshua M., 2008. "Industrial symbiosis of very large-scale photovoltaic manufacturing," Renewable Energy, Elsevier, vol. 33(5), pages 1101-1108.
    2. Abu-Sharkh, S. & Arnold, R.J. & Kohler, J. & Li, R. & Markvart, T. & Ross, J.N. & Steemers, K. & Wilson, P. & Yao, R., 2006. "Can microgrids make a major contribution to UK energy supply?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 78-127, April.
    3. Reichelstein, Stefan & Yorston, Michael, 2013. "The prospects for cost competitive solar PV power," Energy Policy, Elsevier, vol. 55(C), pages 117-127.
    4. Nosrat, Amir & Pearce, Joshua M., 2011. "Dispatch strategy and model for hybrid photovoltaic and trigeneration power systems," Applied Energy, Elsevier, vol. 88(9), pages 3270-3276.
    5. Chen, Guo & Dong, Zhao Yang & Hill, David J. & Zhang, Guo Hua & Hua, Ke Qian, 2010. "Attack structural vulnerability of power grids: A hybrid approach based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 595-603.
    6. Candelise, Chiara & Winskel, Mark & Gross, Robert J.K., 2013. "The dynamics of solar PV costs and prices as a challenge for technology forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 96-107.
    7. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    8. Krotofil, Marina & Cárdenas, Alvaro & Larsen, Jason & Gollmann, Dieter, 2014. "Vulnerabilities of cyber-physical systems to stale data—Determining the optimal time to launch attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(4), pages 213-232.
    9. R. Kinney & P. Crucitti & R. Albert & V. Latora, 2005. "Modeling cascading failures in the North American power grid," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 101-107, July.
    10. Qingwu Gong & Jiazhi Lei & Hui Qiao & Jingjing Qiu, 2017. "Risk Assessment for Distribution Systems Using an Improved PEM-Based Method Considering Wind and Photovoltaic Power Distribution," Sustainability, MDPI, vol. 9(4), pages 1-15, March.
    11. Chaurey, A. & Kandpal, T.C., 2010. "A techno-economic comparison of rural electrification based on solar home systems and PV microgrids," Energy Policy, Elsevier, vol. 38(6), pages 3118-3129, June.
    12. O'Brien, Geoff & Hope, Alex, 2010. "Localism and energy: Negotiating approaches to embedding resilience in energy systems," Energy Policy, Elsevier, vol. 38(12), pages 7550-7558, December.
    13. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    14. Pearce, J.M., 2009. "Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems," Energy, Elsevier, vol. 34(11), pages 1947-1954.
    15. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    16. Nosrat, Amir H. & Swan, Lukas G. & Pearce, Joshua M., 2013. "Improved performance of hybrid photovoltaic-trigeneration systems over photovoltaic-cogen systems including effects of battery storage," Energy, Elsevier, vol. 49(C), pages 366-374.
    17. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shabnam Homaei & Mohamed Hamdy, 2021. "Quantification of Energy Flexibility and Survivability of All-Electric Buildings with Cost-Effective Battery Size: Methodology and Indexes," Energies, MDPI, vol. 14(10), pages 1-32, May.
    2. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    3. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Tsianikas, Stamatis & Zhou, Jian & Birnie, Dunbar P. & Coit, David W., 2019. "Economic trends and comparisons for optimizing grid-outage resilient photovoltaic and battery systems," Applied Energy, Elsevier, vol. 256(C).
    5. Laws, Nicholas D. & Anderson, Kate & DiOrio, Nicholas A. & Li, Xiangkun & McLaren, Joyce, 2018. "Impacts of valuing resilience on cost-optimal PV and storage systems for commercial buildings," Renewable Energy, Elsevier, vol. 127(C), pages 896-909.
    6. Zhou, Jian & Tsianikas, Stamatis & Birnie, Dunbar P. & Coit, David W., 2019. "Economic and resilience benefit analysis of incorporating battery storage to photovoltaic array generation," Renewable Energy, Elsevier, vol. 135(C), pages 652-662.
    7. Emily Prehoda & Joshua M. Pearce & Chelsea Schelly, 2019. "Policies to Overcome Barriers for Renewable Energy Distributed Generation: A Case Study of Utility Structure and Regulatory Regimes in Michigan," Energies, MDPI, vol. 12(4), pages 1-23, February.
    8. Milis, Kevin & Peremans, Herbert & Van Passel, Steven, 2018. "The impact of policy on microgrid economics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3111-3119.
    9. Chen, Xia & Zhou, Jianyu & Shi, Mengxuan & Chen, Yin & Wen, Jinyu, 2022. "Distributed resilient control against denial of service attacks in DC microgrids with constant power load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kantamneni, Abhilash & Winkler, Richelle & Gauchia, Lucia & Pearce, Joshua M., 2016. "Emerging economic viability of grid defection in a northern climate using solar hybrid systems," Energy Policy, Elsevier, vol. 95(C), pages 378-389.
    2. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    3. Mundada, Aishwarya S. & Prehoda, Emily W. & Pearce, Joshua M., 2017. "U.S. market for solar photovoltaic plug-and-play systems," Renewable Energy, Elsevier, vol. 103(C), pages 255-264.
    4. Yu, Hyun Jin Julie, 2018. "A prospective economic assessment of residential PV self-consumption with batteries and its systemic effects: The French case in 2030," Energy Policy, Elsevier, vol. 113(C), pages 673-687.
    5. Wadhawan, Siddharth R. & Pearce, Joshua M., 2017. "Power and energy potential of mass-scale photovoltaic noise barrier deployment: A case study for the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 125-132.
    6. Hou, Hongjuan & Wu, Jiwen & Ding, Zeyu & Yang, Bo & Hu, Eric, 2021. "Performance analysis of a solar-assisted combined cooling, heating and power system with an improved operation strategy," Energy, Elsevier, vol. 227(C).
    7. Adesanya, Adewale A. & Pearce, Joshua M., 2019. "Economic viability of captive off-grid solar photovoltaic and diesel hybrid energy systems for the Nigerian private sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    9. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    10. Basrawi, Firdaus & Yamada, Takanobu & Obara, Shin’ya, 2014. "Economic and environmental based operation strategies of a hybrid photovoltaic–microgas turbine trigeneration system," Applied Energy, Elsevier, vol. 121(C), pages 174-183.
    11. Peffley, Trevor B. & Pearce, Joshua M., 2020. "The potential for grid defection of small and medium sized enterprises using solar photovoltaic, battery and generator hybrid systems," Renewable Energy, Elsevier, vol. 148(C), pages 193-204.
    12. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    13. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    14. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    15. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
    16. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    17. Chiara Modanese & Hannu S. Laine & Toni P. Pasanen & Hele Savin & Joshua M. Pearce, 2018. "Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing," Energies, MDPI, vol. 11(9), pages 1-18, September.
    18. Roselli, C. & Marrasso, E. & Tariello, F. & Sasso, M., 2020. "How different power grid efficiency scenarios affect the energy and environmental feasibility of a polygeneration system," Energy, Elsevier, vol. 201(C).
    19. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    20. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:167-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.