IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v153y2022ics1364032121010613.html
   My bibliography  Save this article

Distributed resilient control against denial of service attacks in DC microgrids with constant power load

Author

Listed:
  • Chen, Xia
  • Zhou, Jianyu
  • Shi, Mengxuan
  • Chen, Yin
  • Wen, Jinyu

Abstract

Recent events have shown that cyber attacks are becoming real threats to the power system reliability and resiliency, and there is no exception to the DC microgrids which would become popular in the future. Currently, most secondary controls in DC microgrids heavily rely on communications, making them specifically vulnerable to cyber attacks. This paper presents a resilient distributed control based on the average consensus algorithm and the proportional-integral (PI) consensus algorithm to enhance the system resilience against denial of service attacks and improve the microgrid stability, particularly in the presence of constant power loads. The proposed control casts the average voltage restoration problem into an optimization problem, and because of this, the voltage control is immune to the communication damage caused by malicious denial of service attacks. Moreover, the small-signal stability model of the DC microgrid with distributed energy storages and constant power loads is established, and the impacts of varying constant power loads, controller parameters and communication topology on the system stability are analyzed. Simulations are conducted to verify the effectiveness of the proposed method.

Suggested Citation

  • Chen, Xia & Zhou, Jianyu & Shi, Mengxuan & Chen, Yin & Wen, Jinyu, 2022. "Distributed resilient control against denial of service attacks in DC microgrids with constant power load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:rensus:v:153:y:2022:i:c:s1364032121010613
    DOI: 10.1016/j.rser.2021.111792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121010613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    2. Singh, Suresh & Gautam, Aditya R. & Fulwani, Deepak, 2017. "Constant power loads and their effects in DC distributed power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 407-421.
    3. Planas, Estefanía & Gil-de-Muro, Asier & Andreu, Jon & Kortabarria, Iñigo & Martínez de Alegría, Iñigo, 2013. "General aspects, hierarchical controls and droop methods in microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 147-159.
    4. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    5. Prehoda, Emily W. & Schelly, Chelsea & Pearce, Joshua M., 2017. "U.S. strategic solar photovoltaic-powered microgrid deployment for enhanced national security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 167-175.
    6. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2021. "A review on resilience studies in active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Arghandeh, Reza & von Meier, Alexandra & Mehrmanesh, Laura & Mili, Lamine, 2016. "On the definition of cyber-physical resilience in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1060-1069.
    8. Zenginis, Ioannis & Vardakas, John S. & Echave, Cynthia & Morató, Moisés & Abadal, Jordi & Verikoukis, Christos V., 2017. "Cooperation in microgrids through power exchange: An optimal sizing and operation approach," Applied Energy, Elsevier, vol. 203(C), pages 972-981.
    9. Shuai, Zhikang & Fang, Junbin & Ning, Fenggen & Shen, Z. John, 2018. "Hierarchical structure and bus voltage control of DC microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3670-3682.
    10. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    11. Abdin, I.F. & Fang, Y.-P. & Zio, E., 2019. "A modeling and optimization framework for power systems design with operational flexibility and resilience against extreme heat waves and drought events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 706-719.
    12. Wang, Yi & Rousis, Anastasios Oulis & Strbac, Goran, 2020. "On microgrids and resilience: A comprehensive review on modeling and operational strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Xu, Luo & Guo, Qinglai & Sheng, Yujie & Muyeen, S.M. & Sun, Hongbin, 2021. "On the resilience of modern power systems: A comprehensive review from the cyber-physical perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Lei, Shunbo & Pozo, David & Wang, Ming-Hao & Li, Qifeng & Li, Yupeng & Peng, Chaoyi, 2022. "Power economic dispatch against extreme weather conditions: The price of resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Wang, Chong & Ju, Ping & Wu, Feng & Lei, Shunbo & Pan, Xueping, 2021. "Sequential steady-state security region-based transmission power system resilience enhancement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Marzal, Silvia & Salas, Robert & González-Medina, Raúl & Garcerá, Gabriel & Figueres, Emilio, 2018. "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3610-3622.
    8. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Wang, Zekai & Ding, Tao & Jia, Wenhao & Huang, Can & Mu, Chenggang & Qu, Ming & Shahidehpour, Mohammad & Yang, Yongheng & Blaabjerg, Frede & Li, Li & Wang, Kang & Chi, Fangde, 2022. "Multi-stage stochastic programming for resilient integrated electricity and natural gas distribution systems against typhoon natural disaster attacks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Wang, Richard & Hsu, Shu-Chien & Zheng, Saina & Chen, Jieh-Haur & Li, Xuran Ivan, 2020. "Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy," Applied Energy, Elsevier, vol. 274(C).
    12. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    13. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Aron Kondoro & Imed Ben Dhaou & Hannu Tenhunen & Nerey Mvungi, 2021. "A Low Latency Secure Communication Architecture for Microgrid Control," Energies, MDPI, vol. 14(19), pages 1-26, October.
    15. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Aditya Sundararajan & Mohammed Olama & Yang Chen, 2023. "Distributed Energy Management for Networked Microgrids with Hardware-in-the-Loop Validation," Energies, MDPI, vol. 16(7), pages 1-27, March.
    16. Zhou, Jian & Tsianikas, Stamatis & Birnie, Dunbar P. & Coit, David W., 2019. "Economic and resilience benefit analysis of incorporating battery storage to photovoltaic array generation," Renewable Energy, Elsevier, vol. 135(C), pages 652-662.
    17. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Anand Krishnan Prakash & Kun Zhang & Pranav Gupta & David Blum & Marc Marshall & Gabe Fierro & Peter Alstone & James Zoellick & Richard Brown & Marco Pritoni, 2020. "Solar+ Optimizer: A Model Predictive Control Optimization Platform for Grid Responsive Building Microgrids," Energies, MDPI, vol. 13(12), pages 1-27, June.
    19. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    20. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:153:y:2022:i:c:s1364032121010613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.