IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v173y2023ics1364032122009194.html
   My bibliography  Save this article

Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives

Author

Listed:
  • Perera, A.T.D.
  • Hong, Tianzhen

Abstract

We reviewed the present studies on the vulnerability and resilience of the energy ecosystem (most parts of the energy ecosystem), considering extreme climate events. This study revealed that the increased interactions formed during the transformation of the energy landscape into an ecosystem could notably increase the vulnerability of the energy infrastructure. Such complex ecosystem cannot be assessed using the present state of the art models used by the energy system modelers. Therefore, this study introduces a novel analogy known as the COVID analogy to understand the propagation of disruption within and beyond the energy ecosystem and organized the present state of the art based on the COVID analogy. The analogy helps to categorize the vulnerability of the energy infrastructure into three stages. The study revealed that although there are many publications covering the vulnerability and resilience of the energy infrastructure, considering extreme climate events, the majority are focused on the direct impact of extreme climate on the energy ecosystem. In addition, most of the studies do not consider the impact of future climate variations during this assessment. The propagation of disruptions was assessed mainly for wildfires and hurricanes. Further, there is a clear research gap in considering vulnerability assessment for interconnected energy infrastructure. The transformation of energy systems into a complex ecosystem notably increases the complexity, making it difficult to assess vulnerability and resilience. A shift from a centralized to decentralized modeling architecture could be beneficial when considering the complexities brought by that transformation. Hybrid models consisting of both physical and data-driven machine learning techniques could also be beneficial in this context.

Suggested Citation

  • Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009194
    DOI: 10.1016/j.rser.2022.113038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122009194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.113038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minhui Qian & Ning Chen & Yuge Chen & Changming Chen & Weiqiang Qiu & Dawei Zhao & Zhenzhi Lin, 2021. "Optimal Coordinated Dispatching Strategy of Multi-Sources Power System with Wind, Hydro and Thermal Power Based on CVaR in Typhoon Environment," Energies, MDPI, vol. 14(13), pages 1-35, June.
    2. Bloomfield, Robin E. & Popov, Peter & Salako, Kizito & Stankovic, Vladimir & Wright, David, 2017. "Preliminary interdependency analysis: An approach to support critical-infrastructure risk-assessment," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 198-217.
    3. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Ciscar, Juan-Carlos & Dowling, Paul, 2014. "Integrated assessment of climate impacts and adaptation in the energy sector," Energy Economics, Elsevier, vol. 46(C), pages 531-538.
    5. Shield, Stephen A. & Quiring, Steven M. & Pino, Jordan V. & Buckstaff, Ken, 2021. "Major impacts of weather events on the electrical power delivery system in the United States," Energy, Elsevier, vol. 218(C).
    6. Morakinyo, Tobi Eniolu & Ren, Chao & Shi, Yuan & Lau, Kevin Ka-Lun & Tong, Hang-Wai & Choy, Chun-Wing & Ng, Edward, 2019. "Estimates of the impact of extreme heat events on cooling energy demand in Hong Kong," Renewable Energy, Elsevier, vol. 142(C), pages 73-84.
    7. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Comparison of alternative decision-making criteria in a two-stage stochastic program for the design of distributed energy systems under uncertainty," Energy, Elsevier, vol. 156(C), pages 709-724.
    8. Arghandeh, Reza & von Meier, Alexandra & Mehrmanesh, Laura & Mili, Lamine, 2016. "On the definition of cyber-physical resilience in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1060-1069.
    9. Höltinger, Stefan & Mikovits, Christian & Schmidt, Johannes & Baumgartner, Johann & Arheimer, Berit & Lindström, Göran & Wetterlund, Elisabeth, 2019. "The impact of climatic extreme events on the feasibility of fully renewable power systems: A case study for Sweden," Energy, Elsevier, vol. 178(C), pages 695-713.
    10. Su, Yufei & Kern, Jordan D. & Reed, Patrick M. & Characklis, Gregory W., 2020. "Compound hydrometeorological extremes across multiple timescales drive volatility in California electricity market prices and emissions," Applied Energy, Elsevier, vol. 276(C).
    11. Feldpausch-Parker, Andrea M. & Peterson, Tarla Rai & Stephens, Jennie C. & Wilson, Elizabeth J., 2018. "Smart grid electricity system planning and climate disruptions: A review of climate and energy discourse post-Superstorm Sandy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1961-1968.
    12. van der Wiel, K. & Stoop, L.P. & van Zuijlen, B.R.H. & Blackport, R. & van den Broek, M.A. & Selten, F.M., 2019. "Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 261-275.
    13. Dehghani, Nariman L. & Jeddi, Ashkan B. & Shafieezadeh, Abdollah, 2021. "Intelligent hurricane resilience enhancement of power distribution systems via deep reinforcement learning," Applied Energy, Elsevier, vol. 285(C).
    14. Pantua, Conrad Allan Jay & Calautit, John Kaiser & Wu, Yupeng, 2020. "A fluid-structure interaction (FSI) and energy generation modelling for roof mounted renewable energy installations in buildings for extreme weather and typhoon resilience," Renewable Energy, Elsevier, vol. 160(C), pages 770-787.
    15. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    16. Pes, Marcelo P. & Pereira, Enio B. & Marengo, Jose A. & Martins, Fernando R. & Heinemann, Detlev & Schmidt, Michael, 2017. "Climate trends on the extreme winds in Brazil," Renewable Energy, Elsevier, vol. 109(C), pages 110-120.
    17. Dasaraden Mauree & Silvia Coccolo & Amarasinghage Tharindu Dasun Perera & Vahid Nik & Jean-Louis Scartezzini & Emanuele Naboni, 2018. "A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    18. Mutschler, Robin & Rüdisüli, Martin & Heer, Philipp & Eggimann, Sven, 2021. "Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake," Applied Energy, Elsevier, vol. 288(C).
    19. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    20. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    21. Ouyang, Min, 2016. "Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 106-116.
    22. Ram, Manish & Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050," Energy, Elsevier, vol. 238(PA).
    23. Hu, Ping & Fan, Wen-Li, 2020. "Mitigation strategy against cascading failures considering vulnerable transmission line in power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    24. Stephen Rose & Paulina Jaramillo & Mitchell J. Small & Jay Apt, 2013. "Quantifying the Hurricane Catastrophe Risk to Offshore Wind Power," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2126-2141, December.
    25. Murray, Portia & Orehounig, Kristina & Grosspietsch, David & Carmeliet, Jan, 2018. "A comparison of storage systems in neighbourhood decentralized energy system applications from 2015 to 2050," Applied Energy, Elsevier, vol. 231(C), pages 1285-1306.
    26. Wang, Zhengchao & Perera, A.T.D., 2020. "Integrated platform to design robust energy internet," Applied Energy, Elsevier, vol. 269(C).
    27. Yiping Fang & Nicola Pedroni & Enrico Zio, 2015. "Optimization of Cascade‐Resilient Electrical Infrastructures and its Validation by Power Flow Modeling," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 594-607, April.
    28. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    29. Zhang, Xinxin & He, Maogang & Zhang, Ying, 2012. "A review of research on the Kalina cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5309-5318.
    30. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    31. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    32. Demissie, Ashenafi A. & Solomon, A.A., 2016. "Power system sensitivity to extreme hydrological conditions as studied using an integrated reservoir and power system dispatch model, the case of Ethiopia," Applied Energy, Elsevier, vol. 182(C), pages 442-463.
    33. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    34. Zhiyong Tian & Shicong Zhang & Jie Deng & Bozena Dorota Hrynyszyn, 2020. "Evaluation on Overheating Risk of a Typical Norwegian Residential Building under Future Extreme Weather Conditions," Energies, MDPI, vol. 13(3), pages 1-12, February.
    35. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    36. Jon Coaffee, 2013. "Towards Next-Generation Urban Resilience in Planning Practice: From Securitization to Integrated Place Making," Planning Practice & Research, Taylor & Francis Journals, vol. 28(3), pages 323-339, June.
    37. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    38. Mendizabal, Maddalen & Heidrich, Oliver & Feliu, Efren & García-Blanco, Gemma & Mendizabal, Alaitz, 2018. "Stimulating urban transition and transformation to achieve sustainable and resilient cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 410-418.
    39. Heracleous, Constantinos & Kolios, Panayiotis & Panayiotou, Christos G. & Ellinas, Georgios & Polycarpou, Marios M., 2017. "Hybrid systems modeling for critical infrastructures interdependency analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 89-101.
    40. R. Cantelmi & G. Di Gravio & R. Patriarca, 2021. "Reviewing qualitative research approaches in the context of critical infrastructure resilience," Environment Systems and Decisions, Springer, vol. 41(3), pages 341-376, September.
    41. David Ward, 2013. "The effect of weather on grid systems and the reliability of electricity supply," Climatic Change, Springer, vol. 121(1), pages 103-113, November.
    42. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    43. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    44. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    45. Mirhassani, SeyedMohsen & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2015. "Advances and challenges in grid tied photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 121-131.
    46. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    47. Abdin, I.F. & Fang, Y.-P. & Zio, E., 2019. "A modeling and optimization framework for power systems design with operational flexibility and resilience against extreme heat waves and drought events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 706-719.
    48. Anthony Patt & Stefan Pfenninger & Johan Lilliestam, 2013. "Vulnerability of solar energy infrastructure and output to climate change," Climatic Change, Springer, vol. 121(1), pages 93-102, November.
    49. Jeffrey A. Bennett & Claire N. Trevisan & Joseph F. DeCarolis & Cecilio Ortiz-García & Marla Pérez-Lugo & Bevin T. Etienne & Andres F. Clarens, 2021. "Extending energy system modelling to include extreme weather risks and application to hurricane events in Puerto Rico," Nature Energy, Nature, vol. 6(3), pages 240-249, March.
    50. Thacker, Scott & Pant, Raghav & Hall, Jim W., 2017. "System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 30-41.
    51. Tsavdaroglou, Margarita & Al-Jibouri, Saad H.S. & Bles, Thomas & Halman, Johannes I.M., 2018. "Proposed methodology for risk analysis of interdependent critical infrastructures to extreme weather events," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 57-71.
    52. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    53. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    54. Mingcai Li & Jun Shi & Jun Guo & Jingfu Cao & Jide Niu & Mingming Xiong, 2015. "Climate Impacts on Extreme Energy Consumption of Different Types of Buildings," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    55. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "An integrated approach to design site specific distributed electrical hubs combining optimization, multi-criterion assessment and decision making," Energy, Elsevier, vol. 134(C), pages 103-120.
    56. Perera, A.T.D. & Coccolo, Silvia & Scartezzini, Jean-Louis & Mauree, Dasaraden, 2018. "Quantifying the impact of urban climate by extending the boundaries of urban energy system modeling," Applied Energy, Elsevier, vol. 222(C), pages 847-860.
    57. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panahi, Homa & Sabouhi, Fatemeh & Bozorgi-Amiri, Ali & Ghaderi, S.F., 2024. "A data-driven optimization model for renewable electricity supply chain design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Shang, Yuping & Sang, Shenghu & Tiwari, Aviral Kumar & Khan, Salahuddin & Zhao, Xin, 2024. "Impacts of renewable energy on climate risk: A global perspective for energy transition in a climate adaptation framework," Applied Energy, Elsevier, vol. 362(C).
    3. Perera, A.T.D. & Zhao, Bingyu & Wang, Zhe & Soga, Kenichi & Hong, Tianzhen, 2023. "Optimal design of microgrids to improve wildfire resilience for vulnerable communities at the wildland-urban interface," Applied Energy, Elsevier, vol. 335(C).
    4. Xu, Jiuping & Tian, Yalou & Wang, Fengjuan & Yang, Guocan & Zhao, Chuandang, 2024. "Resilience-economy-environment equilibrium based configuration interaction approach towards distributed energy system in energy intensive industry parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Jing Tang & Xiao Xiao & Mengqi Han & Rui Shan & Dungang Gu & Tingting Hu & Guanghui Li & Pinhua Rao & Nan Zhang & Jiaqi Lu, 2024. "China’s Sustainable Energy Transition Path to Low-Carbon Renewable Infrastructure Manufacturing under Green Trade Barriers," Sustainability, MDPI, vol. 16(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perera, A.T.D. & Khayatian, F. & Eggimann, S. & Orehounig, K. & Halgamuge, Saman, 2022. "Quantifying the climate and human-system-driven uncertainties in energy planning by using GANs," Applied Energy, Elsevier, vol. 328(C).
    2. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    3. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    4. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Perera, A.T.D. & Wang, Z. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2021. "Towards realization of an Energy Internet: Designing distributed energy systems using game-theoretic approach," Applied Energy, Elsevier, vol. 283(C).
    6. Perera, A.T.D. & Soga, Kenichi & Xu, Yujie & Nico, Peter S. & Hong, Tianzhen, 2023. "Enhancing flexibility for climate change using seasonal energy storage (aquifer thermal energy storage) in distributed energy systems," Applied Energy, Elsevier, vol. 340(C).
    7. Lei, Shunbo & Pozo, David & Wang, Ming-Hao & Li, Qifeng & Li, Yupeng & Peng, Chaoyi, 2022. "Power economic dispatch against extreme weather conditions: The price of resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Zhang, Qianzhi & Wang, Zhaoyu & Ma, Shanshan & Arif, Anmar, 2021. "Stochastic pre-event preparation for enhancing resilience of distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Perera, A.T.D. & Zhao, Bingyu & Wang, Zhe & Soga, Kenichi & Hong, Tianzhen, 2023. "Optimal design of microgrids to improve wildfire resilience for vulnerable communities at the wildland-urban interface," Applied Energy, Elsevier, vol. 335(C).
    10. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    11. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    13. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    15. Galbusera, Luca & Trucco, Paolo & Giannopoulos, Georgios, 2020. "Modeling interdependencies in multi-sectoral critical infrastructure systems: Evolving the DMCI approach," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    16. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2020. "Introducing reinforcement learning to the energy system design process," Applied Energy, Elsevier, vol. 262(C).
    17. Wang, Zhengchao & Perera, A.T.D., 2020. "Integrated platform to design robust energy internet," Applied Energy, Elsevier, vol. 269(C).
    18. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    19. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.